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PART 1-CHARACTERIZING SPACE/TIME RANDOM PROCESSES

hs
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1. INTRODUCTION =

The analysis of arrays of transdw.cers, or antennas, has had such an extensive develop- :::3

ment by now tha one anticipaces Iittle which 1s novel Yet, in spite of the widespread use
of statistical methods in communication systems, it 1s comparitively recent that array, or
antenna, processing methods, based on the statistical properties of both the signal and the
int+ra g nose, were introduced However, sufficient time has elapsed such that a rather
forniidable literature 1s available

Unfortunately, most contributions to this literature are quite mathematically oriented—
asually couched 1 a maze of covariance matrix manipulations While a certain amount of this
may be necessary to formally establish the logic of the approach, the underlying principles
of operation are quite intuitive and can be theoretically explained in terms of an approprniate

combination of classical antenna theory and some fairly straightforward spatial random pro-

cessing Development of this intustive understanding 1s particularly important since the pro-
cessing gain, or signal-to-noise ratio, often carries a ugh premium for normal array processing
applications Often, direct implementation of “optimum” processing methods 1s not possible
either from computational or physical considerations Consequently, the typical concern 1s

with suboptimum methods which exploit the essential features of the “optimum’ processing

to obtain all but “epsilon” of the ultimate performance In addition to understanding how b
spatial processors obtain their optimurm performance, 1t 1s importunt to determune ,ust what :E
this performance is since it sets the standard, or benchmark, against which to compare the f-:
performance of any suboptimal, but implementable, .: stem. =

The use of an array of transducers, or an antenna, 1s typically motivated by two .:,

reasons, both of which are generally coupled together. First, the particular spatial coherency

DR

of a propagating signal is exploited to improve the signal level versus the background noise
The dominant features governing the degree of improvement are the array geometry and the
spatial structure of the background noise. Sometimes, the signal can be improved with simple
statistical smoothing, while at other times the coherence of the background can be used to

combat background noise. In the second apphcation, the directional charactenstics of the
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ambuent field of signals must be determ:ned Agan, the degree to which a source position can
be located 1s influenced by the same factors which determne its detectability

This report 1s divided into threc parts Part 1 considers the problem of characterizing
space/time random processes The study of this protlem » fundamental to the analysis of
the operation of arrays, or antennas, with random mputs

In Part 2 we descnbe the response of atrays to vatious nose frelds We consider the
optimization and resulting optimunt performance of processing methods tor signals and nowse
fields of mterest

Part 3 constders a sequence of topics based upon the results developed m Parts | and
2 These focus on the mtutive concepts of the processing methods in the context of some
selected examples of noise fields and array geometrics and on the introduction of some
selected suboptimum processing methods

Two comments are appropriate here First, we assume tnat the reader has a background
in temporal random processes and a knowledge of Fourier methods Appropriate refererces
are given by Papoulis [1]. Davenport and Root [2], and Van Trec, [3] Second. we formulate
our arrays 1 terms of a contsnuum, or an aperture, and a representation of spatial signals
observed across an aperture This leads to a notation which is somewhat more abstract than
that which corresponds to discrete element arrays However, it does lead to a more funda-
mental consideration of the ssues in spatial processing and to results which are much more
ntwtve and uncluttered by the spatial sampling .ssue introduced by a discrete formulation
Once these resuits are established with a continuous formulation, we consider the ssues needed
to relate them to discrete arrays In essence. we are asserting that tor many situations a contin-
uous analysis 1s more fundamental and easser. although we recognize that ulizmately most

arrays of interest here are discrete and our results must be related to them
2. SPACE/TIME RANDOM PROCESSES

In the theory of temporal processes there are several ways to characterize or describe
the random processes of interest Ultimately, one would want to have a complete specifica-
tion of the processes in terms of their probability distribution fuactions for an arbitrary
number of points in the space/time ficld With the prominent exception of Gaussian and
Poisson processes, this information is generally not available and one must settle for a less

complete or partial characterization Most analyses involve a seccond moment charactenzation
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1 which one specifies the mear and covanance function for the processes of interest Asis

well known, this information 1s alco sufficient to provide a complete characterization for

)

Gaussian processes since 1ts probability distribution of arbitrary order can be related to these

I

two moments We pursue an approach that uses the second moment characterization which

suffices for most of our applications Further, we assume that the processes are also Gaussian

R

when we ash probability questions, ¢ g . the performance ot optimal detectors

T
TR

A second method of analysis mvolves a description of how the random processes are

A

generated Whale this has found extensive use for purely temporal processes, 15 evidenced by
the wealth of material n the literature regaraing state variable estumation procedures, it has
not, as yet, found extensive use for space/time processes The role of these processes and their
relation te distnouted systems 1s clearly an emerging field of interest. however, the analysis of
the partial differential equations introduced to date 1s quite comphicated and 1s not yet

particularly fruatful
2.1 SPACE/TIME COVARIANCES AND FREQUENCY WAVE NUMBER FUNCTIONS
Let us assume that we are concerned with a signal y(t z) that 1s defined over both time

and space ! We model y(t z) as a random process defined over a field with a temporal domamn
orindex set te {To, Tf} and a spattal domamn or index set z € RN with a mean

my(t 2) = Ely(t.2)] Q2n
an.! a space/tume covariance

Ky(tr-28) = El(y(t 21-my (t:2) (v(7 Hmy(r:0)¥] (222

(we often assume zero mean processes for simplicity)

In this most general case the processes are both temporahiy non-stationary and spatially

-

non-stationary , or non-homogeneous Analyzing protiems that involve this class of « ovarance »
=

functions using a second moment charactenization i roducss many 1ssues that anise with :-‘1
F. L

e

lWe use scalar processes and introduce vector ones only when necessary :"1
T~Complex Conpugate We use a complex formulation throughoui This 1s more appropnate for a sonar analysts than 1t w2}

15 for sesmic data, howerer, the corresponderce for st tly real processes is direct See Ref 3 for a completc deelopment
of complex process representatton
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problems involving temporally non-stationary processes In general, the analyses complicate
the mathematical detail, but the conceptual issues are unchanged
In many practical situations the processes encountered are temporally stationary, at

least 1n a wide sense, such that we have

; my(t.2) = my(2) 23)
¥
; ‘N:;" and
33
ﬁ-’c
>4 Kytrzg) =K (t1 2 8 249
;;:)'.f‘_: This assumption may not be strictly satisfied over long intervals of time However, when the
L
z -ﬁ processing interval is short compared to the time period over which the covanance changes, 1t
? is a realistic practical assu.nption
ey We also frequently encounter situations in which the space/time processes are homo-
A
SYhod

geneous or spatially stationary The coviniauce 1s only a function of the vector difference of

V1o

i e i b
20,
LA,

the spatial arguments

-

an m, (t:2) = my (1) @5)
oA
s
2-""3‘ d
4 an
‘ .
3
, Ky(t.r z8) = Ky(t-r z$) (26)

o Q
b %1

) \-”u‘ )

o e Again, this may not be strictly satisfied over large distances, although 1t 15 a realistic approxima-
'(:{3 tion when the receiving aperture is small conipared to the distances over which the covanance
S

}:$3 is non-homogeneous. We point out, however, that several probtems which involve signals in the

I
+ 51;:3 near field and array shading effects need to be discussed 1n the context ot a non-homogeneous
— covariance, so the general model 1s certainly riot void of practical interest.

o)

i,- ; Finally, we have the situation in which a stationary, hoinogeneous process exists Com-

A
, bining the two above assumptions we have

<, my(t.z) =
o, *h y( z) my ()]
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I Ky(t7.28) = Ky(t-1 29) (28)
:'3’:
LT
f We duect our attention principally to problems involving processes which fit within this
-;:; general class of assumption. We also drop the mean from further consideration
. . In many of our analyses 1t 1s useful to consider a spectral decomposi*ion of the random [ 1
o RS
) 'v. processes of interest. By pursuing an analysts 1n a frequency doman, either temporal or R
i.‘ spatial, we can often obtain a significant amount of insight into the operations of our pro- _\
e Y
= cessors. To do this we define a series of Fourer transform operations The temporal frequency N
,3 spatial correlation function associated with a stationary process s given by
& xg
5'! 0
(4 -
‘ Sy(wz )= / Ky(r 28)e3T dr (29)
s L3, (29
Pyt 00
2
“*i When z = §, this yields the temporal spectrum at a pont 1n space. If we consider sampling
. at a number of points in space, so as to forn: a vector process, we can order the points
! and create a matrix format the spectral covartance of the vector process by sampling
L
,,;S Sy(w:g,s ), appropriately.
a
¥l Similarly, for a homogei.eous process, we can define the temporal correlation, spatial
‘E wave number function as
i
4
<) 00 00
ial
A .
Fyltr k) = / . / dzK(t,r:pek 2 210
,‘.; Loo J-00
% bt
-3 ) 3
oo Note that the integration 1s performed over the entire spatial domain of the process ;- !
N >
?T.I Consequently, there 1s a fundamental difference among the transforms over one, two, or o

three dimensions We do not use this function very frequently because there are better

s

5‘
Z

/!

alternate representations for the signal in the temporal frequency doman
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For a stationary homogeneous process, the frequency wave number function 1s

Py(w'l_<)=[d1- !; dz}(y(,—.z)e-](wf'&'z) Q1

(Note the sign difference with respect to the spatial variable)

defined as

Thus function has a very appealing interpretation When we pursue an analysis similar to
that used for the spectral representation theerem for temporal processes, we find that the

process y(t.z) can be represented n a Sticltjes integral form [4] as

00
y(t:z) = f f / eJ(@tk gy k), 2.12)
o0 00 -o0

where k has dimension N, the dimension of the space over which the process s defined. For

the decomposition of Y(w k) we have the fol'owing properties

“2 do [ 2 a
E[ | Y(wy ko) Y(wp k2] = —

P (w'k) (2 13a)
pis N Y=
&4 K (2n)

or formally E[ldY(w k)12 = ~2 K p (k). (2 13b)
= 27 ")N y

E[(Y(wy:ky) - Ywq kDX Y(wykg) - Yws.k3))*] =0, (2 14a)

when ((wy,w2) x (k1,k9)) N (w3,04) x (k3.kg)) =0 (2.14b)

i.e , disjoint frequency wave number banuds are uncorrelated Consequently, we may consider
this class of space/time random processes to be composed of a superposition of plane waves of
radian frequency w and wave number k This 1s the spatial generahzation of a spectral decom-

posttion of a random process

et
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If, m addition, we impose the condition that the process y(t z) satisties the homogeneous

wave equation, then we have the constraint

w
—= |k » (2.15a)
c
2af .

or m = fA = ¢ (velocity of propagation) (2 15b)

Thus defines a structure which signals propagating m a medium must satisfy Further this

mplies that at any particular w the frequency wave number function 1s nonzero only on a

sphere of radius 2n/A = k| = w/c This constramt 1s not necessary for y(t ;) to correspond

-,
>

kel

to a propagating process For example, one may have propagation in three dimensions and yet :;r
,'3:\':

consider a representation over a two-dimensional surface since the two-dimensional wave k7

number value corresponds unambiguously to a three-dimensional surface except for 1ts sign
The mherent advantage of this representation for homcgeneous fields 1s that 1t allows us
to make many statements regarding the processing of our signals which are completely dual to
analogous frequency domain operations wlien processing temporal waveforms Naturally, there
1s a close relationship among the vanous transforms discussed, which are summarized in Figure
21 The paper and text by Yaglom [5,6] are particularly appropnate references for
the harmonic analysis of space/time processes. With these references the rigor 1 using
the harmonic analysis can be pursued at length. For our purposes the major problem
relates to the notation of representing y(t z) 1n either temporal or spatial frequency domains
This can be quite awkward if pursued too far We shall use the Stieltjes notation dY(w k) when
we wish to do this with the important properties of Y(w k) summarized in Eqs 2 13 and
2 14 above.
Often, 1t 1s convenient to use different frequency measures The temporal frequency, f, in

cycles per sec, or Hertz, 1s given by

f=w/2n (216)

Simularly, the spatial wave vector v, in cycles per umit distance, 1s given by

v=k/2n @17
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< KV(T 2)
t Space Time
Correlation
Function

Sv(w 2

Temporal Spectrum
Spatial Correlation
Function

Fv(r k)

emporal Correlation,
[Spatiat Wave number
dWT Function

TR Pyl k)
Frequency
Wave number

't“; 2 Function
W

e~ Figure 2-1 Relationship ainong the various second moment representations for stationary -
, S homogeneous space time random processes

) %‘\ﬂ For plane waves
2 Ik/2nl =1zl =ffc=1/A (2.18)

S It 1s also convenient to define the etfective wavelength along each axis in ierms of the com-

- }3};@1 ponents of v. In Cartesian coordnates we have
- ‘5"\, vy = 1Ay (2 19a)

. b= (2.19b)

oy S
s .

G

v, = 1A, (2 19¢)

% O
X7

S:_'v

23
o

-,
e

(Note that one does not obtain these effective wavelengths by simply projecting the total wave-

|

length oniented along the propagation direction upon the respective axes )
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To 1llustrate these concepts and to develop some results that we need later, we present

some examples First, we shall consider the znalysis of some of the various models popularly

A,

used 1n the literature. Next we consider a general discusston of Tepresenting space/time processes
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Here v.¢ also draw upon some results from electromagnetics whici apparentiy have not found .
A

their way nto the sonar/seismic literature o
b

Generally, 1. 1s easiest 10 discuss these space/time processes in terms of either the :;1

Al

temporal frequency spatial coirelation or the frequency wave number function. Consequently,

i

many results are specified at a single wemporal frequency, or for a narrow freauency band For
a broadband analysts, the integration over a specified frequency range 's imphed.
Example 1 Directional Signal

The simplest signal ¢ f intetest 1s a planc wave propagating in a directron with speed ¢

Fean

Laanyiy

The space/time process has the forri

y(t.z) =y lt-(ar /o)l 220
© N as iltustrated 1in Frgure 2 2

o Ka

& _ Propagation
z Direction a

rid
Magnitude "Sal= 7

:\}‘3 Wave fronts
N k, * 2= constant

y(t.2) = constant

L

o
b
SEE
N
o

“

L

Figure 2-2 Model of plane wave propzgation
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If we assume that yo(t) 1s a stattonary random process, then the space time correlation

function 1s given by (assuming zero means)
Ky(A'r Az) = E[y(t 2) y*(t-A7 z2A2)] = Elyy(t-(a-z/c)) y,*(t-At-(a* (z-Az)/c))]

=Ky (Ar-(a-Azfc)) (2.21)
o

The temporal frequency spatial correlation function follows the Fourier transform relation
of Eq 2 9. We find

Sy(‘*’-AZ) = syo (w)e-J(w/c)(g-AZ) 222

Consequently, we have cross-spectrum of a plane curve at two different locations which 1s
related to the spectrum of the process at a single point by a sumple linear phase shift that
reflects the propagation phase between the two points. Therefore, the elements of spectral
matrices that mnvolve purc plane waves consist of a common amplhitude and a set of phase shifts
between the various sensors

If we now transform this function with respect to the spatial variable, we obtain the fre-

quency wave number function

Py(wzg) = //dg Sy(w:z)el.ls'z = syo(w)uo(g- % g) (223)
RN !
w \_ w ) w w
where u, k- ?g =, kX - —c- ay Juy ky < ay “o(kz s az) (224)

is a three-dimensional impulse function (or two-dimensional for a planar analysis), which in
Cartesian coordinates can be wrntten as a product of impulse functions of a single variable. (In
discussing spatial impulse functions, one needs to be very careful in defining them, especrally
with regard to the particular coordinate system used The common hmiting sequences often
yield paradoxical results, and an operational definition that uses generalized functions 1s

appropriate [7].)

o
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We find that a plane wave propagating with speed ¢ and direction a has an impulsive frequency

R

wave number spectrum located at

k.=

w
-a c

a (225)

mn wave number space. (Unless the wave 1s monochromatic, 1 ¢ , at a single temporal frequency,

L AAOOMASOEL B 3e)

the magmitude of the wave number vector changes as a function of the temporai frequency ) We

again point out that the space over which this transform 1s taken must be specified Theoret-

Py et

1cally, in a homogeneous, 1sotropic medium the magnitude of the wave number k at a

particular frequency should be a constant, indicating that for three dimensions the function

Py(w k) 1s nonzero only on a sphere, nonzerc cn a circle 1n two dimensions, or nonzero at two

alad s

points opposite 1n sign i one dimension

Sl A

However, in many cases one considers representing the waves 1n a three-d.mensional space

e,

.
4

as projected on a two-dimensional geometry. This leads to an analysis in which the magmitude

of the wave number 1s not a constant at a particular temporal frequency. It should be obvious :;:]
that any set of statistically independent directional signals propagating as plane waves can be :::'1:
represented with an impulsive frequency wave number function. However, such a representation ‘.'n:
is not possible if the components are correlated as could possibly be envisioned in some coherent ;‘:‘

T
DALY

"

multipath situations The fundamental difficulty stems from the requirement that components

b
5

from disjoint regions of wave number space must be uncorrelated as specified by Eq. 2 14,

therefore such a process would not be homogeneous.
Another commonly used model 1s isotropic noise. This noise process is commonly

advocated for ambient sea noise. It can be viewed as the superposition of plane waves propagating

from all directions with a uniform statistical level. This has a spectral covariance structure of

the form %
. [2= 1 f
Sylw - = S(w) sine| Tz -8 226 i

Since this particular process fis within a more general context of a plane wave process, we

discuss this more general representation

sin{x}

! sine(x) 4
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2.2 REPRESENTATIONS FOR PROPAGATING SIGNAL PROCESSES

2.2.1 Processes in Three Dimensions

2.2.1.1 Plane Wave. A commonly employed model for the ambient noise background s

isotropic or omnidirectional noise We first describe this process and many others in terms of

a model for generating its temporal frequency spatial correlation function, after which we

find the associated frequency wave number function Later, we specify the frequency wave

number function directly. We will find that this 1s an easier and much more intuitive approach
At a temporal frequency w, isotropic nose 1n three dimensions is modeled as a super-

position of infinitesimal plane wave processes, all radiating towards a common point {8] These

waves may be considered to be generated on the surface of a sphere whose radius 1s large com-

pared to any geometries or wavelengths of interest Using the integrated transform: representa-

tion we have

Ed 21 . )
dY(wg2) = f do f Si‘fr(?ﬂ ¥ (e, 0,93 M (2 272)
o Yo
where
y(ty) = f dY(w Delt, (2.27b)
o0

and k, = 2a/\ with 2,(9,¢) as a umit vector in the radial direction. Consequently, -k.a(8.9)

forms a propagation vector k(@,9) at a temporal frequency w,, radiating towards the center

cf the sphere, or

2 ®o "
k(8,9) = -ky2,(0,¢) = 3,(0.9) = e a0.9) (2 2¢
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Figure 2-3. Incremental surface area contributing to a plane wave spatial process.
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We assume that disjoint regions of the sphere radiate uncorrelated components so that

o
RS 3 yeH

(sin(61)/4) 2,

oy
L%

(L,

uA(01-02)uy @192\ f4
E(dY(w, 81 $dY (o 0261 = So(wo-01:87) (°*°’—) ( “’)

(229

—.
L2
LA

o

.,
3

ey

/J&E

0

(The impulse terms should be interpreted formally and should operate simultaneously. The

o
+

factor of (4#/sin 01) needs to be introduced because of the use of spherical coordinates ) The

"'(i Al oly 2
Y,

hS

temporal frequency spatial correlation function 1s given with some abuse of notation by

Sy(wO:Ag) =E(dY(wy:2)dY*(w, z-42)) (2.30) oy
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When we use Eq 2 27a, we have

Sy(""o Az)

20 sin(8 ) L sin(f;)
= d@] an d¢1 d¢2 pm E[dY(wo(?l,qS])dY*(wl 02,¢2)]
0 0

. o TKor(01.01) 2% 1koar (02,0 2 (2-42)

(231)

Equation 2 29 imphes that disjomnt (8,$) 1s uncorrelated and yields the desired result

74
) g2 (0,6)"2
$y(w, A) = f do f S':; ) 46 80, 0,90 K004z @32
0 %

The frequency wave number function follows from the Fourter transform relationship It s

useful to define the wave-number k 1n both spherical and Cartesian coordinates
k=kyag + kyay + kg2, = kay Op9y) 233

where 2 ((Ik,¢k) 1s a unit radial vector in the same direction ask We have

00, o " .
Py(wo k) = f/f dAge'K'AE[ d(i//2 i‘:_::’i) dé So(wo.e,qs)e"koﬁrw"”) Az
4 o0y
= /" do /1 Sl:,(,a) d¢ Sy(wy:6.9) / l / d Agej(kr‘-’r(ok@k)'koe,(o, #)-Bz
(UG

(234)
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The evaluation of the last integral leads to an impulse, or delta function, In wave number space.

Le, :

i/ g . (kK Ju (00, (P1¢)
/ / f e KOt 0N Bz _ 1 UolrkoloiDuoloy 235
o~ k02 sin (8)

N
\i-:

d

,.
W

When we substitute Eq 2 35 into Eq. 2 34, we obtain

NG
int

<

5 uglkrko)
i Py k) = (23 S (e by by) ——— (236)
4n ko2

o,

I

We have the intuitive interpretation that the resulting frequency wave number function has the

o3

AT

o,
e

same distribution as the spectra of the plane waves at the various locations on the sphere. The

L
’
i
¥

delta function arises because these waves are modeled as pure plane waves analogous to pure tones

%.; temporally. By starting with this specification of the noise field we can model a large number of
‘ Wé ambien. fields that may be encountered.
- YN ?‘

; 2 2.2.1.2 Senies Expansions in Terms of Spherical Harmonics for Space/Time Covariances for

; 1’1 Plane Wave Processes. At this point we observe that once S,(w,,"0.9) is specified, Py(wo'g)
.@;Q follows directly. One can describe the distribution of plane wave power in the signal field quite

‘ intuitively 1n terms of either function. We now demonstrate a series representation for

So(wo 8,6), which enables us to find the temporal frequency spatial correlation function
Sy(w*Ag_\ quite conveniently Since many of the signal processing techniques involve this func-
tion, these results, coupled with a previous analysis of purely directionat signals, form a
reasonably complete method of analyzing ambient signal fields with a propagating structure.
The basic techniques that we employ draw upon some results in spherical expansions which

were first used in analyzing similar problems in electromagnetics Qur principle reference 15

Stratton[9].
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The expression for the temporal spectrum-spatial covariance function when represented

1n spherical coordinates is

k4 27

sing
Sy(wyi2) = f do / ;—" do S{w, 6.9)
0 Y0

; g IKotzlcos(8)cos(B,)+sn(B)sin(0,) (sin(dhsin(g,) +eastd)oos(,))) (2.37a)

T
i

a0

iy
B

where

LY

»
£

e rAL| (2 37b)

. ,,;;,‘ Using results for spherical expansions, we can expand S,(w,,.0,¢) n a series of the form [9, Eqs
{399)-(420)].

®©  n
£ tml
R So(wo-0,0) = E E Snm(@o) P (cosd)el™?, (2.382)

B n=0 m=-n

: _-’j where the coefficient 5, (w,,) is given by

T 2n

2ntl  (n-1mt)! Im| i

=27 ) sim¢ (o
Shm(we) ol )![0 df)'/o. smfdg S (w.0,8) P, (cosB)e (238b)

{

m
and the function P n (cosf) isa Legendre function of the argument cos & These functions have

been tabulated extensively, alternatively one can generate them with the Rodriguez’s formula {10]

dTPOx) (42 (ymi2 gmtng,2 0

Py (x) = (x21)W2 (239)

A

SRS

dxm 201 dxmn
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Substituting the expansion of Eq 2 38a into the expression for Sy(wo z) we have, after

exchanging the mtegration and summations,

m=n

Sy(wo 1) = Z.Q: Z Shm{®o)

n=0 m=-n

:/W 40 snr12(0) PI;nl (co So)e-Jkorzcos(())cos(Bz)
0

2n 5
. _l [ " ej(mqb-korzsm(l? Jsin(6,)cos($-9;)) (2 40)
2n

We now perform the integration with respect to ¢. We change integration variables first We define

o= Pp, + 12[ (2.41)

Substituting this change of vanables yields

L [ g 6 e‘|(m<1>-k(,,r1.,‘sm(0) sin(8,)cos (9-9,))
27

[

2 t ’
_l_ [ . o (6,12 cj[m¢ koI, sin(6) sin(7,) sin(g')]
27
0

MMz 3 [k rsn(8)sin(6,)] (242

where we nave used the tabulated integral{ 10]
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& Im(0) = L / cos(x sin(¢)-mg)dg = — f cos(x su(@)-me)de

3 w r

0 o7
1 27 i 4
== / cos(x sm(9)-mg)dp = >~ / dg mé-» smig)] (243)
0 T

We substitute this result into Eq 2 40, the expression for Sy(wo,;), and obtam

d n
Sy@eD= D, D Sam(wq) "

n=o m=-n

& i

kA
s 5

{ it
ey
oo BN

. % [ do sin(6) Pu:l(cosﬁ ) Ikt sin(@) Sm(oz)e-.!korzcos(o) cos(8,)

(2.44)

To evaluate this integral we use the following addition formulae for sphenical harmonics from
Stratton {9, p 411 (Eq 2 69a)]"

[T
In{kQRIP™ (coso) = (Lz)- 40 P (cos0) I, [KR sin(e) sin(@)} etk Reos(@)cos(),
0
(245)

where j;(x) is a spherical Bessel function, which has also been tabulated extensively. We have
Rayleigh’s formula[11]

i) = xD (;(- a%)" snc(x) (2 46)

Making the 1dentification of the respective vaniables and changing the sign of k,, we have
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y
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N
a5

4
dé k1, cos(f 0
— sin(9) P (cosf) §_[k,r, sin(6) sin(6.,)] ¢ of£08(6) cos(0,)
] n nt*o'z z )
0 -
|ml .
=) 1plkor,) P . (cosf;) (247
&g In summary, we finally obtain
N
3 ’_‘% o mEn -
& @0 DT D, D Sum@) MM ko) P leosle™z , 248)
e n=0 m=-n
3
o
%
‘ . where we have from Eqs 2 28aand 2 28b
\ ™
2 N
"
A% = Imi E
e - m .
B S 0,9) = E E Sam(®e) P (cosd)M? (2 49) 3
\- n=0 m=-n ::,',
AhN K
v %
. and E
Y . i
(4 el fmp [T 2 im|
& = = H . m¢
"N Spm(«) e ((n+m)!) / de f d¢sin 8 S(w 6.9) P n (cos8)e’
' 0 0
G
_‘ (2.49b)
A
3 |
A m
e The expressions for finding the Legendre functions Pln (cosf) and the spherical Bessel functions
:'.;f‘ InCIkgllz]) are given by, respectively, Egs. 2.29 and 2 46 We pont out that hoth of these
)
3 expressions have been tabulated We have confined our attention to plane wave processes
0
i v that oniginated on a sphere 1n wave number space, 1 ¢ , [kl = 2@/A. Using the references cited, it
4;7:; 1s straightforward to develop an appropriate theory when we relax this restriction.
§::f :
24
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Example 2a - Isotropic Noise .

'

The simplest noise field in terms of this representation arises when ,

%

Sy(w), n=m=0

Spm(w) = (2.50) ‘

3 0, otherwise v
b5 :
b &,‘:’ ::
bars :
2o :
v ;K_ We have from Eq. 2.49 :
t

% :
1 I
b So(w:8,9)=S,(w),0<0 <7, 0<¢<2n 51 v
This is a commonly used riodel for the ambient nose present in the ocean The temporal fre- ﬁ

quency spatial correlation function follows directly from Eqs. 2.46 and 2 48 "

. 0 .

Sy(o.?0 z) =S,(wg) Jo (KoTz) Po [cos(Oz)] = So(w) smc(korz) (2.52) E

B ! g
0 . §
4 This result has been derived in many places, but in a much less general context 8,12} -;'.
% "‘—‘ Example 2b - Surface (or Bottom Noise) ¢
51 &

. With this noise field we assume that tiere 1s a much stronger intensity for the nose field l:;

% 1n the vicimty of @ = 0 and that there is an azimutal symmetry To do these we choose '::
:

1 3
N §4(6.8,8) = S4(@) [1 +acos(@)) 2.53) 3
e _ B
2 5‘% such that the noise level as a function of 8 appears as in Figures 24 and 2-5. Thus type of notse R
LY ',
: } can be used to describe a high intensity noise field which is present from the surface (or ‘:jl
0 bottom). We have &
rogs R
‘\b-‘- % ::11

e B
:{-.% 0, m#0,0rn=2 1

S x|

W Spm(@we) = Sp(w) 1, n=0, m=0 (254) #

4 " a, n= 1, m=i E
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Figure 2-4. Relative intensity of noise power
So(w.0,¢) =] t+oacosd
for a noisy surface.
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Consequently, the temporal frequency spatial correlation function becomes

0 0
Sy(w:y = §p(w) Jo(kol'z) PE) ) [cos(8,)} NN (ko"z) P(l ) {cos(8,)]
= So(wo){smc(korz)-b Jo k—l?- fsme(kyr,)-cos(k i) cos(d,)} (2.55)
olz

Example 2c - Layer Notse
With this model of a noise fieid we assume that there 1s a much stronger ntensity in the

vicinity of @ = 90°, and that there is azimuthal symmetry Specifically, we choose
_ _ i 3
So(w.0,¢) =8g(w) [l-och(cosO)] =Sy(w) [1 -Za - Za cos(20)] (2.56)

The mtensity as a function of @ 1s illustrated in Figures 2-6 and 2-7. We have

0, m#0
I, n=0,m=0
Smn{(@o) = 8o(wy) 0, n=i,m=0 (2.57)

~a,n=2,m=90

0 n=23,m=0

The temporal frequency spatial correlation function becomes
S :z)=§, j P(o) 9.0} + o jy(k P(o) 9}
y(wo:2) = So(we) olkory) 0 teos(8,)] + o jolk,r,) 2 [cos(9,}

3cos(kqry) 3cos(20,)+ 1.]

=8§o(wg) sinc(korz) +a ( 3 3 ) sinc(korz) -

Kat,)

ofz (ko"z)2 4

L 3
(2.58)
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Sofwo0:¢)=1-7[i 43 cos (20)]

for layer noise.
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It should be clear that we can now model a large class of processes with this method More

+

complex elevation, or 8, dependence can be i:troduced and sectors of noise in azimuth, or ¢,

can also be incorporated
The model 1s particularly convenient when there are relatively few significant sphenical _‘1’

harmonics. Fortunately, this is a common situation for a typical ambtent noise field in many

sonar applications.
1t 1s worthwhile to point out that the analysis in terms of spherical harmonics demonstrates S
that many ambient field models can lead to the stmilar oscillatory behavior tor the temporal .!:
frequency spatial covartance function This stems from the ideal bandlimited behavior that the ‘
finite velocity of propagation imposes upon the wave number spectrum The oscillatory behavior Ef
certainly cannot be interpreted as being particularly unique to an 1sotropic noise model —j
:2:? 2.2.2 Representations for Signal Processes in Two Dimensions :‘i
;i :

In the discussion of section 2 2 we considered the representation of signals propagating in
three dimensions whose wave number was limited 1n magmtude to 2n/A. In this section we
analyze the related problem of the representation of signals on a surface. In many problems, this
representation may be more convenient than the one in the previous section Problems in this
context may arse 1n several applications. In many, the medium of interest supports surface
waves; for example, seismic Rayleigh and Love waves or internal ocean waves. In other applica-
tions, one observes signals which propagate in three dimensions but are observed on a two-
dimensional surface

If we contine our attention to plane waves, there is little ambiguity since only two points

on the sphere model map to an identical point in the plane. If we assume that this ambiguity

can be resolved, possibly via the characteristics of the receivers, the geometry of the model, or

its inrelevancy, one can proceed with a two-dimensional analysts which 1s often considerably
simpler than the corresponding three-dimensional one [12, 13, 14]!. We point out here that in
contrast to the previous section, we will not constrain the magmitude of the wave number, although

in most applications it will have a finite upper hmit

lTIm' model 1s particularly relevant to processing scisnuc data for here the signals are all meident from heneath the carth’s
surface, as parually discussed by Berg, Gaarder, or Capon

26
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The fundamental relations between the temporal frequency-spatial correlation function

~

and the wave number spectrum remain virtually identical with the exception of the integration ::

region which becomes a plane rather than sphenical surface. We have for the frequency wave :_

number function :'.'

¢

:3 oo ‘::
oo . K
. Pylw k)= / / Sy(w'g)e"-S 2dz  (Cartesian coordinates) (2 59a) P
Ry ~00 g
:: ) 3
3 X
bRV, o r2n s :
3 ) / [ sy(w.@e’("r'Z’{°°s‘¢li) cos(g,) + sin(gy) sm(q>z)},zd,zﬂ,¢E :
3 0 ‘0 (Polar coordinates) (2.59b) F-
‘Eﬁ &
o a
ffﬁi Similarly, for the inverse transform we have g:-f
o 3
=

:g'\l oo {’
o' ike dk g
‘-;3 Sy(wz) = Py(w k}eIL2 = (Cartesian coordinates) (2 60a) w
3 /o @mn? i

|

0 L [T i(ket,) [cos(By) costy) + sin(@y) sin(9,)] X
24 - oy i(keT;) [cos(@y) cos(e,) + sin(dy) sin(¢, L
] 2 Py(w.k)e - - - kydkdoy i

g @ny°Jo Jo &
Y (Polar coordinates) (2.60b) o

f [

o :l:
N We can proceed with an analysis paraliel to that which we did for the spherical representation. ?
O . '
;3,;‘5 First, we demonstrate that the analysis of a directional signal remains unchanged, and then we :1_4
55 5y
discuss a series representation which leads to a convenient method of analysis. :’
?‘. Example 3 - Directional Signals =
L:Z',-S One ot the principal differences which often arises in a two-dimensional analysis 1s that {_;
"ty i [
}ﬁi the propagation velocity as projected upon the surface need not be a constant unless one con- :.J
o . 1
- fines his attention to surface waves. For a directional signal we have E

. a
= 3
e 3

¥(t.2) = ¥ {t- (e-z/c(kg)] @.61) ’w

) R

i
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which describes the signal propagation where c(k,) 1s the propagation velocity as a function of

the signal wave number, ko. Ths leads to a temporal frequency spatial correlation function of
the form

- X, . k..
5,00 = Sgtpe”| T EN FLog (ks @262
where we have the relation
w
k= CKS) a (2 63)

The frequency wave number function is still impulsive, or
Py(w k) = 8y(w)uy(k-ky) = so(‘*’)uo(kx'ksx)“o(ky'ksy) (2.64)
To consider an analy s1s of some more general processes using a series representation, we specify

Py(w.lg) in terms of the polar coordinates k; and ¢ We expand the frequency wave number

function Py(w k) in the series-integral form

e
jm
P @b= ) pplwkyd "k, 2569)
m=-co
where
1 n jme
Pl k)= 5 f Fy(w K" Kdgys ky = Ikl = const (2 66)
0

This is simply a Fourier serics decompusition at a specific k.
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To proceed further, we have the following sequence of Fourier-Bessel or Hankel transforms
For any function f(p), p > 0 with a bounded first moment, the nth order (n > - 1/2) Hankel trans-

form 1s given by

(-]
F,()= f(p)J (pM)pdp, (2.67a)
2 n n
L 0
2%
i
‘:@ whule the inverse transform relationship is
5
;z’é:
. [--]
A
';:ﬂ f(p) = / E (0T p(pA)AdA (2.67b)
5 °
W
¥
Ak (We note that one can generally use Hankel functions rather than Bessel functions. and, in
r}:‘:’.: particular, when n = 1/2 one has the common Fourer transform pair [15, Vol 2. p 73])
,_\: We define the mt! order Fourier-Bessel transform pair for pp(w kp) to be £ (w:A) such
L that we have
5\
W
N
¥ L7
-.f_‘., fp(w:\) = p Pmtw@ kI (kpkdk, (2.68a)
A3 G 0
b T
b ! and
g ]
il
= oo
':::: Pp(wky) = / (e DI kAL (2 68b)
s 0
Y
bl
—— (One could choose any order for the Bessel function or transform order, however, 1t will be
:\ convenient to choose it to be m as indicated.) The net result of our decomposition 1s that we
z} can express Py(w:g) in the senes integra! form
{ oo (-~} ¢
m
Py(wik) = Z / fn(@ NI AR AN K (2.69)
m=-o0 ()
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Thus 1s simply a Fourier-Bessel representation for a cylindrical coordinate system, and 1t has
been used extensively 1n the study of electromagnetic fields[9] :::
1

The temporal frequency spatial correlation function follows, using this representation We E
have in polar coordmnates from Eq 2 60b :.1
pe

0 21 :'-

1 -j(k . )cost Dy

Sy(w )= f dk, f a0y Kp Pyl Kpe T2k e (2.70) i

em? o ]

Substituting Eq 2.65 yields E

1 oo N mdyk 41
Sy(w'2)= 2 /dkrf d¢kkr E Pp(w kr)e'll ¢E r'z cos(¢!(_ Z
an?Jy S, o

1 [ = /2
=<2_") f dk K, Z pre0 k)02 )Jm(krrg) 27
0

=-00

. jm(¢,-7/2)
m(¢,-n/2
= E fm((o:rz)e'l Z
m=-°

In summary, we have the relationships

Folled]
IV

LALFA

i,

Py(wik) = Z Pk Pk (2.723)
m=-o0
and
H -rid
@D D fylwe™ O, @2.720)

ms-co

v 2t s 4| %l
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AL M8 4N

PN A

30

l.h




1
>
x5

A
Aoy

e
Ko,

it

A

& |

o e
S

TR o |

s

o
vd
iR

where
Pm(w k)a~wfp,(w ry) (2 72¢)

form an mth order, Fourier—Bessel, or Hankel transform pair

One can use the numerous transform pair relations that have been tabulated by Erdely1
The essential pont here 1s that a large amount of literature and tabulated integrals are
available for these transforms [10)

For convenience, we point out a possible, but certainly not exclusive, approach to the
analysis of this class of fields Let us assume that the magmitude of the wave number is bounded
such that k, < k. Just as we did earlier, we can expand erther py(w kp) or kyppy(w kp) man
orthogonal sertes of polynominals 1n the variable kr/k0 In the following, we consider a

Tchebychev expanston of k pp(w k). We have[10]

= C k
E : nm T
K p(w k) = _T _,ogkr<ko, (2 73a)
I A 1k kD2 "(ko)

where Tn(x) 1s an nth order Tchebychev polyncnual, and

k
o k. sdk
1 T T
Com = b / Repp(wikp) Ty <k_) (k_) > 10 (273b)
0 0 0
k
2 ° dkr
Com= T _/ kP Kp) (-l;) » 0=0 (2739
0

We now have the tabulated integral {15, Vol 2,p 42(I)]

A

1 T,
n g b
0 (1-p9) /
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Substituting into the transform integral and using Eq 2 74, we obtain

K,y Ko, [
0 o'z o'z
fn(wz) = 2 z : Com J(m*l-n)/Z( 2 )J(m-n)IZ( 5 ) (2.75)
n=0

such that

1 ﬂko had d korz_ korz Jm(¢ _ﬂ/z)
Sy(w-2 =(37)(T)Z 2 Com J(m+n)/2( 5— Py —7—f¢

m=-0 n=0
(2 76)

Since the Tchebychev polynominals are orthogonal over (-1,1) we can obtain some degree of
freedom since we are interested only in the region (0,1) Consequently, by choosing p,(w k)
appropnately for kr < 0 we can mimimze the number of terms needed 1n a fimte term
approximation

Alternatively, one could approach the transform using Eq 2 74 by expat ding p,(w kp)

and using the following recurrence relationship 1n the transform of Eq 2.72a.

T1(x) + Ty 1 (%)

XT,(x) = 5

2.77)

Again, the important point is not so much this particular method of expanston, but that there 1s
a wealth of results available using tabulated special functions which can be talored for an
individual application

Example 4 — Circle Noise

A particular noise model often used follows when we choose

So(@ugtksky)

- 2m? .
Pyl =@m? —— =,

(2.78)

32

L

x
)

P O

-

e e

AT,
oy 2r

PMNYEIL A

| X

A
;

oI, T
LTI S

'-.-4

-




i.e., this is a ring of plane waves radiating towards the center. We have

0, m#0
pm(w:kr) = (2.79)
S (whu,(kek.)
-0 m=0
ko

‘When we use the zero order Bessel transform, as indicated by Eq 2 68a, we have

0 m=0
(@)= (280)

So(“’)Jo(ko"g)’ m=0
so that the temporal frequency spatial correlation function becomes
Sy(wz)= So(wlokory) (281)

Example 5a — Two-dymensional representation for isotropic noise

Let us assume a frequency wave number function of the form

2 -1/2
So(w) kr
Py(w:]s) S —— 1-f— (2 82)
21|'k02 Kk,

Due to the angular symmetry, the function pp,(w.k) 1s nonzero only for m=0 We have

0, m#0

pm(w:kr) = (2.83)
-1/2

S, (w) 2
 _h (k—') s m=0
21rk02 ky
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This Py {w &} 13 shown n Figure 2-8 Using the Tchebychev eapansion, as shown in Eq 2 73a.
we find

KRR )

2 5
< 0, m#0 g
=2 2.
f{“ﬁ kipmlw kp = (2 84) k2
2N -1
- 3 :
ﬁ S () 1 ! (kr> T (kr) 0 [
24 ol @) 5= |1 {— 1\ m= =
3 211'k0 ko ko ?r
& )
ki Gt
;2; Substituting into Eq 2 73b we find :3
24 ¥
¥. 0, m#) E
; 2 Com=] 0, m=0, n#| (2.85) S‘f
NR S4(w) ’.jf
N2 —, m=0, n=1 i
2k, E
Ak
.;:‘; 12 -‘é}
:? 1 &
5 %
o) o 5
y o
S I
33 8 Iy
i P, (s k) 7} el
DR S (@ 6f- 3
.y My S !'5
: 4= &
: 5
\% 3 %{
sy 2~ ’q
g 1 n
hTv 0 L l ] ] i i 1 1 L )
<3 ] .1 2 3 4 5 6 7 8 .9 1.0
S o
z,,‘ Figure 2-8. P(w:k) for three-dimensional 1sotropic noise projected on a two-
] dimensional surface
g
"
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i
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Consequently, we have

Sp(w) k.t kr.
J 20, Zoly Jofz
Sy(‘*’ Z)_ 27"(0 s k011/2< 2 ) J‘l/2< 2 >
nf 4 Koty kot, 3
= §o(w) E ("korz) sin (2—) cos (—-2——>-— So(w)smc(korz) (2 86)

We observe that we are led to the same temporal frequency spatial correlation function as with

spherically symmetric noise (see Eq 2 52) In a subsequent discussion, we explore the reason tor this

AT EECAE

Example 5b - Two-dimensional representation for noise with a high concentration of low

wave number components ‘;}‘_
Let us assume that the frequency wave number function Py(w k) has the form 3::
]
1 S kr l(r 2 12y
P (w k) =S, (w) ———<{|— l-—) (287)
y ° n2k02 (ko> kg

(

This wave number function, shown mn Figure 2-9, corresponds to a high intensity source near kr =0

which may be due to a strong component normal to the surface Pursuing the same analysis we find

\ 2| -1/2 k
T T
kepm{w:kp) = Sp(w) — 1 -(i—) T, <—‘> (2.88a) z.
Tk, 0, ko §
33
&
Sp(w) q
= == 2 88b, A
Com 1r2k0 , n=m=0 ( ) : ﬂ

e

A

0, n#0 or m#0

o

e AT,
v

N

Therefore, we have

i
f)

ZaY
[ 1]

2Ky
8y(w:z) = So(w) J0 (—5") (289
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e E
oo
:{;; Figure 2-9. Two-dimensional noise with a high concentration of low oA
2ee] wave number components =3
* &3 !
[ i
5. We could pursue examples at length using this procedure, the generality of the approach, !;
E 4] i
9 however, should now be apparent &
o] DR
HEG \‘,:4
2 2.2.3 Representations for Three-Dimensional Plane Wave Noise Projected on a Two-Dimensionat %
¥ Surface bl
; At this point we mvestigate the relationship between the three dimensional representation
i discussed earher and the two-dimensional one just established, and which is appropnate when
“h

-~

three-dimensional noise 1s observed on a two-dimensional surface. We do this by considenng

e
(Leerss

what happens when we confine our attention to a plane i space or, 1 particular, wh2n z,=0

G i

N We define
frod
fity
,‘é.?’ Zg =z| = Zydy + Zyéy l.(s = E = kxgx + kyﬂy (290)
] ::'Ej z,=0 k,=
%3]
Al

.;}‘.'«'

e
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In terms of a three-dimensional wave number function

{--3
_ _ 1 ik, z, +k,z,)
Sylw z9) =Sylw 2l = a3 f / / Py(e kJe © X2 Y dk, dkydk,
00

oo o0 Okz _sz.z ,
= / / / Py(w k) o € dkxdky/(?.n)“ 291

Therefore, the two-dimensional wave numker function is given by

3 dk,
Poyles i) = f Pay(w k) =~ 292)
~0o

We have the two-dimensional Fourier transform pair
[ dk
Sy(w.g:s)N—/ P3(w k) —2-;2 =Pyylw kg (2.93)
p4- -1

Let us now examine what happens when we project our plane wave niodel on a two-
dimensional surface An easy way to do this, which eliminates many of the issues regarding the
delta functions 1n several dunensions, 1s to establish the Fourier transform of Sy(w zg) We

have from Eq 2 37a with 8,=x/2

27

d sin(fy) k  sin(fy)r,cos(9,41)
sy(w Zs) =J[ da_]g d¢]_(_T So(w‘ol_(_’(b']_(_)ej 0 ( l_(.) z (¢Z lﬁ
0 0 (294)
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We {irst perform the mtegration with respect to ) over the regions [0.r/2] and [r/2.7)
(Thus is necessary since two ponts on the surface of the sphere for the plane wave model
project to the same pomnt on the two-dimensional surface ) We now change vartables in
each region Setting

k
sn (@)= =, 0<0, <12 (295a)
)
k;
sin (m-61) = Tc— w2 < 0y <= (2.95b)
0
we obtamn
K, - _
, doyk, kT, cos(¢,-9y)
Sw zg) = —_— = ==

1
= e
4k o [ (5]
1
k k
. {SOEJ sm'l(k—r), ¢k] +Sol:w.1r-sin'](k—r) ) ¢k:| }
0 E 0 -

Comparing Eq. 2 96 with our two-dimensional polar coordinate transform (see Eq 2 70),

we have
k; ke
So w* sm'l k_ , ¢£ +So <.o:7r~sm‘l k— ’¢;_
0. 0

P(w k) = (2m)?2 297
N ASIE
a2 1=
kO

The numerator terms represent those points on the sphere which project to the point on a
surface with a two-dimensional wave number k. the denommator term s the Jacobian of the
transformation Intuitively, the Jacobian plot iniplies that noise spread over a unit surface area
on the sphere leads to a more mtense value of the wave number function when 1t 1s 1n the
honzontal direction than when i the vertical direction

(296)
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It should be apparent that we wan also go from our surtace wave model to a three-
dimensional model, with possibly some ambiguity as to which hemisphere We also see that the
factor 1/41 - (kr/ko)2 introduced m our Tchebychev expansion arises quite naturally as a
Jacobian 1 our transformation Consequently, both the expansions m spherical harmonies and
m our two-dimensional analysis have many common results

We again pomnt out that wlile the spherical harmonic expansion 1s quite natural tor our
plane wave model. the Tchebychev eapansion was only a suggested possible approach For some
types of noise fields, another expansion may be much more conuise, and one should bring the
special function hterature, which we have not discussed at all extensively, to bear.

We have discussed the representation of plane wave signals in detail. however. we
emphasize the approaches taken. not the specifics of a particular example We now turn our
attention to receiver apertures for observing the signal field
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PART 2- RESPONSE OF ARRAYS TO VARIOUS
NOISE FIELDS

AW

AT

A

3. RECEIVING APERTURES

Bl

TR

In this chapter we discuss the general properties of receiving apertures, or antennas,
with the emphasis on characterizing their response to random excitations Qur intent 1s to
understand how knowledge of the statistical characteristics of the ambient noise field can be
used to achieve enhanced performance. Toward this goal, classical beamforming theory 1s quite

I 3eh |

useful so we introduce results from this literature that are relevant to our analysis.

We first consider describing the aperture response. The development parallels that of
Section 2 1n that we introduce a temporal-spatial domain description, followed by temporal
frequency-spatial domain one, and finally a frequency-wave number one of the response. This
is done by discussing several commonly used arrays and analyzing their responses Next we
study the role of sensor noise, which 1s extremely important in the analysis of the statistical
characteristics of array processing The noise structure 1s closely coupled to the array geometry
and usually does not lend itself to a separate analysis Finally, we consider the 1ssues separating
continuous arrays, i.e., an aperture, and an array of sensors, 1 e , discrete array We simply state
that an array of sensors 1s the spatial dual to a discrete time, or sampling problem, with some
added complexities Since sampling in the time domain tends to obscure the more fundamental
1ssues, we choose not to introduce the corresponding difficulties in the analysis of spatial
processing, and, we devote a separate section to the study of the sampling questions introduced
by a discrete array.

O | A

;

L

PR AR

"

? 1

WV

L
o

e
h

XA N

40

;o

(@,

L




»
-
o

2 -".

_
M

2L

'

el

J v
st R

X

o~

AR AT D
ot

AN

KA A

Y,

..
e
oA

L

3
)

3.1 ARRAY RESPONSE CHARACTERIZATION
Intuitively, 1t appears that the description of 4 recetver aperture should be quite simple.
For example, 1f we have a linear array, as shown in Figure 3-1, which observes a signal field

y(t.z) over a specified time duration we would describe our received signal as

T, <t<Tg

1(t,8) = y(t,%a,) for 3.1

lsz le|l<L/2

- .,‘,-_' Dyt~
A

We see that, just as for a purely temporal process. we need to specify the length of the obser-

vation, however, we note that we also need to specify the onientation 1n space by means of a unit

e

P
Aty b

fector a, which 1s tangent to the array.
As a second example. we have a circular array as illustrated in Figure 3-2. The recened
signal could be described as

(R(cosf, cosp, cosp-sme, sm¢)gx
1(t,) = y(t +(R(cosf, sing, cosptsing, sin¢):_1y ,0<¢<2r (32)
+HR(-s1n8 , cosp)a,

The formal description of the observation process can be quite tedious As a result, it 1s usually
necessary to keep the geometry simple in order to obtain an intuitn 2 understanding of optimum
array processing Similar statements can be made when describing the operation of a discrete
array, where one must specify the location of all the individual sensor elements For our
purposes we denote the array location by £,1 ¢ . we consider observation points for zeS2 In the
apphcations of interest to us, the observed signal 1s weighted, or shaded, and filtered at each
point, and then collected, or summed, together to form an output signal, usually called a beam
Figure 3 3 displays this operation graphically while Eq 3 3 expresses it mathematically

Ty
Iy = dr dz g,(t.,7 2) y(7 2) (33)

T, Q
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This expression has a parailel in classical filtering theory . however. 1t van be deceptively simple, .,
5o a few comments are appropriate ”
First, one should note that there are two tssues n specifying the beam operation the 2
geometry of the array, or aperture, as given by §2. and the weighting pattern g(t,7 z) One can !
constder expressing these m terms of a function with finite imits stnular to the analysis ot ::‘
temporal functions Generally, however, 1t 1s useful to separate the two The array geometry (:,‘
mmposes more fundamental constraints while the shading, or weighting, 1s adjusted within these r
constraints In addition, the introduction of geometries of two and three dimensions can lead i
to some very subtle considerations, especially with regard to spatial impulses, or singulanty "
functions, when one uses a theory dual to the Founer transform pair relationship between the ::
system impulse response and the transfer function i:
-

In this context 1t 1s worthwhile to introduce a stmple example to illustrate the nature
of these subtleties Let us consider a linear array oriented along the z, axis We represent its

.y

o

response as N
2

T L/2 <

(t) = dr de g(t,7.8) y(7 ngx) (34) 3

T, *L/2 ;‘_

o

~

=

If we want to use infinite limits and specify the array response n terms of a single function, <,
-

we have 4]
~

A \l

(-] oo ,'-_

it = / dr / / f dz gy (7 2) ¥(7 2) 352 3

:\\

R ] -] ‘\v

where Ry
o~

By

867 2,0 Ugzy) Uz, Iyl <L T <7<Ty 2

BooltT 2) = (3 5b) L

0, lzyl > L, orr<T,orr>Ty N

&

b

Observe that we incorporate the dependence along the zy and z, axes via the use of the ::g
impulses While this 1s a very straightforward example, similar results appear 1n more complicated .‘5
3

contexts, particularly when one uses an analysis via transform methods For simplicity. we use 1
an integral representations as illustrated in Eq. 3 4 :::
RN

\

o
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One can mtroduce various formalisms to incorporate these impulse terms, providing one 1s
careful about his description of the aperture and 1ts response

We now develop the concepts of spatial filters in terms of their wave number response
This type of approach has many of the same advantages as a frequency domain analysis for
porely temporal processes, and the two descriptions complement one another

3.2 FREQUENCY AND WAVE NUMBER DESCRIPTIONS OF ARRAY RESPONSES

.
Bk

Representing signals and filter responses in the frequency domain leads to conventent

AL

and intuitive inethods of analyses In describing the operation of spatial filters on signals, one

NCCZCANS

can employ a similar analyses with comparable benefits In this section we introduce the

(h

necessary tools along lines parallel to those used for space time processes
We assume that at each point z on the aperture £ the filtering operation 1s time
invariant, such that

g(t,r z) = g(t-r.z) = g(At z), At=t-7 (36)

The temporal frequency response at a point on the aperture 1s given by

%o
G(w:z) = / g(At g)e'j""At d(At) 37
%

fFor discrete arrays, G(w z)) 1s the transfer function of the 1tH sensor element )

In most of the analyses that we consider, the spatial operation 1s of fundamental
importance to us, we generally assume that the temporal frequency w 1s fixed n that we are
concerned with a narrow frequency band If the signals involved are narrowband, this
analysis suffices, 1f they are broadband, one needs to integrate the analysis over the frequency
band of interest The most interesting and useful function 1s the frequency wave number
description which characterizes the response of the spatial filter to a plane wave with wave
number k and temporal frequency w We define this function to be

9w k) =] [ g7 2)eN@TKD drdz = / G(w 2)dK'Zdz (38)
(s}
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A beam pattern can be obtained from the wave number response by fixing the magnitude of k,
usually at w/c, and evaluating as a function of the elevation angle 8 and the azimuth ¢

Since this function 1s of particular importance 1n our analyses, we mtroduce several
examples Tne simplest wave number response 1s for a hnear array with uniform weighting
k12,2

,or

of-'l- 121 magnitude and phasmg of e_',

L2 gkpea t
=1 ka, % L
glw k)= ] < &%t g = smC[(K-L(T)‘_@a?] » 39
-L/2

where kp 1s the wave number associated with a particular target direction This wave number
response 1s unity whenever k has the same projection in the a, direction as k1 The width of
the main lobe along this direction 1s 1/L between null points

If one introduces a trrangular shading with the same phasing

1 212
={- -—2 |8 <Lj/2
g(r 9 T { L } 12l /
(310)
0, 1£] >L/2
L2
gkrea,® jkea®
g(w.k)= L[y 28 kriaat gkeagty G 1)
L L
-L/2
we obtain the wave number response
2 L
g{w k) =smc” {(k-kp) * a4 T 312)

This beam pattern has lower sidelobes but twice the main lobe width of the umformly
weighted aperture

If one wants to take the inverse transform of these functions to produce the
weighting pattern, one should be careful because of the aforementioned impulse terms
For example, assume ky = ay and a, = a, We then have

L
g(w.k) = sinc El_(_—l_(T) 2y _12._] =snc [kx?] (3.13)
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The nverse transform 1s

G@y:/ i“_’. // dk Glw k)ej(w""]_(',l) ir
oo T S QT T

Uo(zy) ug(zy) ug(n), 121 <12

X,
o
Lo,

I
=)L

BE X V0
I,

¥:
@

(314)

4

0, el >L/2

O

Other shadings would lead to a d.fferent frequency wave number response Extending the
array into the other coordinates yust leads to a parallel analysis For example. a disc of

~1k7°z
radis r, situated 1n the x,y plane with a radial shading f(r) and a phasing = B2 generates o
a beam pattern given by i

s
ke .
g(wk)= f/ f[(z$+z;)]eJszeJk Zdz
Q 2)2(+23=R2

a A

R, T x . 5o
=/ df/q rgof(nye EET) r(cos(@lay + sin(ga,) o
75 Yo G 15)

R.
2 2T A
Jrl(ky-ky ) cos(é) + (ky -k ) sm(g)] >
= f dr / rdgf(r)e Xy Y Ty b
0 0

Ra
= 211/ () Ju[rll—(-'l‘-Tl xy]’ dr A
0
where ’ b
kkir = Ik kp )%+ (k,ky )211/2 316
Ik ‘ITxy [(ky Tx) ( y Ty) 1 ( )
Consequently, g(w k) 1s a zero order Hankel, or Fourier-Bessel transform of f(r) with respect 3‘:\

to the term |k-kiT In general, for circular geometries the Fourier-Bessel transforms assume
Xy

the role of classical Fournier methods for linear arrays In the special case of 4 ring array

47 oY




PO (AN b aicd I i LA LA RS AN LS LR R L iyl Atyhl WL D AN A AL ARIC AR S S A I LA ACA I AR AL A ":\'3...
2 a
L2
o 1 Pg
5% f(r) = —— u,(r-R,) 317a 2
é‘:‘% 2R, 7 @ ¢ ) -
A
i the pattern leads to ]
(; b
p Ky = 2
o gewk) =Jg ([ kky| ¢y Ry (3 17b) %
Tt g
:4 Nﬁ‘\ :.\
._‘1 If the array forms a disc, then .::
a5 o
3 ) b3
3 f() = . r<R R
si 5 ﬂRaz @ Q-‘.
22%3 Y
&3 318)
& 0, >R, 3
i bR
o 4@ B Jy(| kklxy Ry) by
- k T m————eee. 'nﬂ
\ 3 [kkrlxy R f':
> s
3 ‘ &
joit (Thus 1s the famihiar Aury disc response whach 1s quate useful in optical signal processing )
A Ring and disc arrays can be usea in two contexts typically These correspond to
B "‘q
M - 2 2, 1/ 2
R [kkpley = (ky® +ky%) (3 192)
F e when the target 1s normal to the array front, or
B
‘%‘!—; _ 2 2 2n | 271/2
S [kkrlxy = (k- < costr) *{ky- 3 sindy (3 19b)
:'5?: when the target propagation direction 1s parallel to the array surface
X s‘.\,: We now investigate how we can describe the airay response in terms of g(w k).
) Consider an arbitrary signal freld y(t z). We can represent ihis function in terms of a fre-
w quency wave number transform
-‘\.§-q
e o
A5 Hwtkz)
P ¥tz = / Y(w:k)e do  _dk (3 20a)
o 2 (Qm)
::":; where
3
)
oy oo
L Ywk)= ,/ / y(t 2e¥ KD gz (3 20b)
.. 3 EA
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The response of the spatial processor becomes

= T HwrkD) g dk
NGRS Y(w k)e ™ (,,—Tr)‘q g(t-r z) drdz
Q oo o0 . -

(321)
o0 o
~ / / . °/g(a>.l§) Y(w k) ﬂ(ﬁ e-""’t dw
(27) 2n
~00 =00
or in the frequency domain
o0
- dk PO
Ry(w) = / . / g(w k) Y(wk) X {322)
@2m

oo

We see that the aperture collimates the signal according to its wave number with a weighting
g(w k) Equivalently, we may consider that when we have a pure plane wave with fre-
quency wr and wave number k;1e,

N+1
Y(w k)= uo(w-wT) uo(lng) 2nm) (3.23)
we are observing it through a window; g1 K) such that we have
Ro(@) = ug(w+ ) glwp &T)(Zﬂ) (3.24)

it we wan. to select some particular region of wave number space, as we do when detecting
plane wave signals, g(w k) should be as narrow as possible However, just as in temporal
filtering, this introduces an attendant sidelobe problem, and much of optimum array theory
essentially involves determining the best {rade-off of these two 1ssues according to a
statistical measure.

We have not mtroduced the most general type of spatial processing In much of
optical theory lenses are considered as wave number filters that generate a reradiated field
of the form

Youtput (<5 = 9(@ K) Yo (@) (325)
which 1s completely parallel to temporal filtering. With the exception of some application
to multiple beam outputs, we do not need to use this more general formulation for our

applications  On closer examination, it does, however, suggest some interesting possibilities
for implementing our processors
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3.3 FILTERIMNG OF RANDOM PROCESSES

The next 1ssue of concern is descrnibing how random processes propagate through
these apertures Here, the frequency wave nuniber representation of tie ambient nosse field
1s particularly relevant We confine the discussion to those random ficlds which lend them-
selves to this descuiption Usizg Eqs 2 12 and 3 21, we have

ytz)= / / / f aY(w g)e’(“’"'—"y 326

dRy(w) = f / j[g(w b d¥(w k) (3.27)
k

and

Our harmonic analysis led to the result that disjornt regrors of the frequency wave
nuraber space had uncorrelated increments dY(w k) The output spectrum s, therefcre,

given by*
] 2
S (o= f / / lg(w:l_o‘ P(w:k) (;'—;N (328)
0 ¥

This particuiar formula 1s extremely important 1n our subsequent analyses 1t 1s parallel to
the input-output relation for temporal spectra

Soutput (@) = H@)I? 8, ¢ (w0) G229

We integrate over all k space because our aperture acts as a weighted collimator of
the ambient plane waves If we want to examine a particular region of frequency wave
number space, € g , to make an estimate of Py(w k), the above formulae implies that we
look at this region thiough an aperture weighting of |g (cw l_()l'2 Ideally, we would like to
make ths function as impulsive as possible The finite aperture limits our ability to ao this
We are again led to a trade off bc tween sidelobe level—which causes the other regions of the
space to interfere—and the beamwidth which compromises our resolution

! The vector output, or multibeam, generalization of this 15 gnen by

- T
5, for=fatrprondwy =5
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One can consider| g(w lg)l2 to be the power transform function for the aperture
It would be convenient to define the aperture autocorrelation function as the mverse
Fourier transform, or

Rgw 2) = [/ | gt} 2 oK zak (3 30)

When one accounts for difficulties with spatial impulse functions 1n inverse trans-
forming g(w k), it 1s not surprising that these are compounded when dealing with |g(cw ]_()I2
unless one 1s dealing with linear or planar geometries

3.4 SENSOR, OR RECEIVER, NOISE

Any real, or physical, receiving aperture cannot measure the incident signal field
perfectly, as the observation operation 1s inherently noisy Sometimes this noise may be
msignificant compared with other system noises, however, it does ultimately set hmits
on the performance of the receiving aperture and on any subsequent processing Ths sensor,
or recetver noise typicatly may manifest itself i several different ways The electronics of the
sensor elements and their assoctated preamplitters, microseisms for seismic systems, or flow
noise past the hydrophone for underwater acoustics are posstble sources

In our discussion, this component of the noise process, denoted w(t z) 1s modeled
as being additive such that the ambient signal field plus the receiver, or sensor, noise 1s
recorded at the sensor output The noise w(t z) has temporal and spatial bandwidths that are
much larger than any other processes of interest The essential aspect of the model 1s that the
observation noise 1s uncorrelated among sensor locations For a continuous aperture, £, this
implies that the space/time corelation function across the receving aperture 1s given by

~

Ky(t.r 2,0) = Efw(t 22wHr §)]) =N 8 (-8 (z-§) (331)

The use of the operator 6Q(§-$‘) deserves some comment The §2 subscript on the 8¢ indicates
that 1ts sifting property as an identity operator s defined only across the extent of the aperture
At first glance 1t would seem appropnate to model the white noise as being uncorrelated across
all regions of the svatial domam Unfortunately, such a model can introduce fundamental
difficulties, and divergent results for an otherwise realistic model are often obtained For
example, this occurs 1n the filtering of two dimenstonal white noise with a linear array

For a discrete array, ihe covariance between elements 1s given by

Kw(t,rzgi,_zg) = E{w(t.z,) w*(r.z.j)l = Noéo(t—r)&lJ (332)
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where the 1" element 1s denoted by its location z, (Often the spectral level No 1s denoted

by an effective operating temperature Tge such that one has

NO = kBTeff (3 33)

where kg 1s the Boltzmann constant, 1 38 X 10723 watts/Hz-°K )

As pointed out above, this white noise component 1s present in virtually all physically
motivated problems Sometimes 1t can be realistically neglected as other effects dommate the
system performance From a theoretical aspect, however, one can demonstrate that many
detection and estimation problems are singular, 1 e , they predict perfect performance 1if the
white noise component 1s not present For example, in many of the array processing problems '
that we shall study, the gain produced by the array may become artificially large as the number {
or denstty, of the sensors 1s increased Essentially, results which are singular imply a perfect
measurement of the ambient field and then a resulting cancellation procecs or a very sensitive
situation where very precise knowledge of the system parameters is required Therefore we
consider a moie detailed study of the role of the receiver, or sensor. noise 1n our analysis of
array and apertures Unfortunately, the issues are not nearly as apparent as they are when
one deals with temporal processes While duals of temporal process results can be used
extensively, some aspects of spatial processing have no duals as they are inherently coupled to
the array geometry

In this section, we present some 1ssues regarding receiver noise We discuss the possibility
of using frequency-wave number concepts and the problem of equating discrete and continuous
array performance Finally, we discuss a conservation property which sets the minimum output
level that the receiver noise can have

At first inspection one would agree that recetver, or sensor, noise can be modeled by
using a flat frequency wave number spectrum analogous to that which 1s done for purely
temporal processes. Intuittve as this approach may be, it 1s fundamentally incorrect, except in
some very special, albert important, situattons The basic difficulty 1s that the noise 1s coupled
to the geometry of the array To illustrate this, we examine two situations

Assume that one is using a hne array which 1s operating in a two-dumenstonal
environment The array is capable of discriminating, or filtering, wave numbers projected
along the array. Consequently, if one uses a two-dimensional flat wave-number spectrum,
1e, two-dimenstonal white noise, the noise power which propagate- through the filter along
wave numbers with the same projection 1s infinite. Similarly, one can use a ring array as
described by Eq 3.15 which has resolution 1n all directions Here the wave number
response does not fall off rapidly enough as]k| > oo, 1t behaves as 1/|k| and the noise power
propagating through the array te ihe filter output 1s ikewise infinite, i e,

NO /[d!.(. Joz(lk'lsTlxyRa) ded (334)
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Thus one cannot routinely extend one’s concept of temporal white noise i representing

S0

sensor noise This 1s unfortunate since 1t introduces some difficulty in applying trequency

O

domain concepts to the design of aperture response weightings In some situations, particularly
linear or rectangular arrays, one can consider the noise to have a spectrum which is flat with
respect to the wave number as projected along the array surface Using this approach, one can
proceed 1n the study of linear arrays more or less 1n parallel to 4 temporal doman analysis

A

For more comphcated arrays, ¢ g , crossed arrays or ring arrays, one needs to be quite careful :',
about the effects of this noise r.-
In our study of arrays, we generate an aperture weighting that produces a beam pattern bt
which 1s directed at a specified wave numbcr, yet suppresses the background nose If this :i
background nose 1s composed of just sensor, or receiver noise, the optimum aperture ‘
weighting to mimimize the noise power 1n the beam output 1s to phase the array towards the e
target wave number and use a constant aniplitude weighting. This 1s the spatial analog to E
matched filtering Venfymg this result is quite direct If we wish to direct a beam at wave :'
number I_(T, we require :
g
_ / Xtz 4
gwkp) = J Glw ze az=1, Vo, (335)

Q b5
“‘:-f o~
g &
»i:':: with the noise power response given by ::.::
A -

-
Y,
-~

et
i Sp (@)= J dz; [ dzj Glw z2)) G¥(w 29)N, 8y(21-27) i'*‘
R‘ @ Q il
o
£
‘u," v‘;‘,
v
S =N, / dz [G(wzl? (3.36) 3
[
¥ Q '
0 . P
0y Straightforward application of the calculus of vaniations minimizes Eq. 3.36 subject to the ;::..
5% constraint of Eq 3 35 This yields 4oy
X o
= - "
N Gwz=—e T2 (3 372) N
2 \‘
oL
z::g where
?3 Ag= /dg. the “area” of the array (3 37b)
e 2
¥ *-\::,

and
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3 :

‘ If we alter the aperture response so that some other noise source can be combated we increase !
the effect of the white noise at the output of the beam 1t 1s when these effects reach

equilibrium that we have one of the fundamental tradeoffs which one must make 1n deter- K

minng the optimum aperture response ::

i

;

3.5 DISCRETE ARRAYS VERSUS CONTINUQUS APERTURES

We have chosen to pursue an analysis which models the aperture as a continuum  In most
physical systems, the sensor elements are discrete which leads to matrix-vector formulation
We have gone to a continuous aperture formulation for the following reason

A discrete array 15 essentially a spatial sampler As such, the samphing aspects of the
analysis, particularly the imbedding of the geometry 1n vector notation, often tend to cloud
the more fundamental 1ssues of the spatial processing Many arrays in current or proposed
systems involve iterelement spacings which are so small that one 1s well above the spatial
Nyquist sampling frequency Here, a denser sampling of any coherent, or spatially bandhimited,
part of the signal field 1s redundant In these situations, the continuous approach 1s more
mformative regarding the actual processing, and the performance of the physically discrete
system 1s closely approximated by the continuous aperture. Remember here that, in contrast
to temporal processes, one 1s always working with bandlimited signals that arise through propa-
gation in the medium They are strictly bandlimited due to the fixed upper hmit of 2z/A for
the maximum value of the wave number, or spatial frequency When one pursues a temporal
analysis, the continuous representation is usually more natural, although the implementation
may be done using a sampled system with digital filters This does not imply that we can
neglect these questions It is simply our assertion that we feel many of the concepts of
optimum processing are more transparent and can be approached more directly using a
continuous analysis.

A TR

A TR

OFAE. | Ry

There are two issues which concern us in comparing discrete and continuous arrays
Furst, 1f we have a beam pattern which we generate with a continuous model, we want to
determne the interelement spacing necessary to produce approximately the same beam
pattern by using a discrete array Second, we want to equate the effects of sensor, or recetver
noise, for discrete and continuous arrays so that we can compare their performance in subse-
quent sections To solve both of these problems in general for an arbitrary array geometry
1s quite difficult Significant understanding can be obtained. however, by examining
hnear arrays

. ATARAAANS LASia

Let us assume that we have a linear array with an aperture weighting
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G(r z)forz="fa,, 18 < L/2, (3 38)

which produces a beam pattern g(w k) If this array 1s sampled with a spacing AL and
the resulting beam pattern analyzed, one obtains

L
— 2AL Kea AL
gs(w k) = E Gylwye ™ 22T (3 392)
~ L
"= TIAC
where
Gp(w) = G(w ng,AL) (3 39b)

g(w k) and gy(w k) can be related via a direct parallel to the temporal sampling theorem
This yields

1 - 27n
glw k)=~ Z gl k= = a,) (3 40)
n= -0

Consequently, we have the spectrum repeated at intervals of (21r/AL)ga Two effects are

significant here If g(w k) 1s significant for k outside the region |k'§al < ALL then dis-

tortion 1s created via aliasing a classical problem of temporal filters Thus, we should
consider the factors that govern the spatial bandwidth of the arrays Conventionally, the
minmum beamwidth measured 1n radians/m of an array of length L 1s on the order of
(2a/L), or 1/(L/A) radians The imphication for this mimmum bandwidth s that at least two
samples spaced at an mterval of AL <L/2 would suffice The difficulty here 1s that this
response would be reproduced at intervals of 2an/AL or 2a/L which could ntroduce
sigmficant sidelobe issues With larger beamwidths moic samples are required, but the side-
lobes remain To alleviate this, one usually shifts these sidelobes out beyond the region of
propagating signals, 1 ¢., beyond the wave number region in which other sources could enter
In effect, one 1s controlhing the beam pattern across the region k| < 2a/\, not simply across
the main beam region Examunation of the proof of the sampling theorem shows that this is
more of the essence than just the simple prevention of aliasing The sampling required then 1s

2 2
- > -1, 341
AL 2()\>, (341
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359
‘
T
] or
'{,Er'l
’- AL <N/2, (3.42)
_‘ which 1s a classical resuit 1n array theory
}.P.’ Related to this 1ssue s the theory of superdirective arrays, defined 1n the conventional
,,.'::; sense to be considerably narrower than that indicated by classical theory with either discrete
kﬁ' or contiruous signals This 1s done at the expense of creating a4 large sidelobe structure outside
) the region where propagating signals can arise, 1 e , for [k| > 2@/ In this case significantly
3‘;&{ denser samplings will be required to approximate a continuous array and to prevent ahasing
t@ Alternatively, one could start from a discrete formulation d.rectly, as 1s done 1n the
**‘Ev Dolph-Techebychev [16] theory When more than one coordinate, or dimension, 1s intro-
| duced, a number of 1ssues appear which do not have analogs as developed 1n the classical
‘ 3 temporal theory. F:i
! :f{:’i The second 1ssue that we wish to constder is the effect of sensor, or recewver, notse Qﬂ
:%:;i; In particular, 1deal samphing of such a noise field by a point element cannot be realized The :',;J
’5 question anses, then, of how we can compare the continuous white noise level of Eq 3.31, by
4 for an array, with finite extent and discrete white no.se as expressed by Eq 3 32, fora
:”': ] finite aperture element array
t":; The key to this analysis is to consider that a discrete element 1s small enough that
:.:] any coherent part of the noise field 1s observed undistorted while the incoherent, or white
{ part, 1s averaged over an effective element region Essentially, we have a spatial parallel of a
,;.:"l finite time averager Let us constder an example relating the equivaience of a continuous
;»'.(‘: ) Iinear array and a very densely spaced lmear point array
'.f.: We assume that the 1th element of the discrete linear array 1s located at location
N z, = (nAL.0,0) and the interelement spacing 1s AL, as shown in Figure 3-4 By assumption,
' \ this 1s very small compared to any spatial correlations of the coherent parts of the observeu
-;-':i‘q: field to the noise levels We consider that the output of the nth sensor 1s even by
R 2, +ALI2
1 ~
:r; () = aL y(t'Z) dz, (3 43a)
L(:{:f_ : zxn-AL/ 2 &
5:"3 b
o where
¢s]
R3] =nAL (3 43b)
& g "
S
N
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Figuic 34. Continuous and discrete array
and
Z=(2,,0,0) (3430

If we consider y(t z) to be composed of a coherent part s(t z) and spatial white noise w(t z)
with level N0 , we have
c

In(0) = s(tz,) + wi(t) » (3.44a)

where s(t,zn) 1s the approximation for the coherent part of the signal and the sensor noise 1s

" ; AL/2
1
wn(= w(t:Z) dzy (3 44b)
z, - ALJ2
n

The cross covariance between elements of the wn(t) 15 gtven by

N,
O¢c
Elwp(twy (7)) = AL Spm S0 = N°d 8 m 8(t-1) (3 45a)
where
N°c
Nog= L (3 45b)

1.e., the effective noise density for the discrete element is smoothed over the sensor extent,
so that the larger the sensor face the smaller 1s the noise level. We finally point out that this
noise 1s not 1sotropic as 1t 1s uncorrelated from sensor to sensor no matter how close they are
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4 In discussing optimum array proc -ing, we consider the comparison of discrete and : J
% ; continuous models in more detail This equivalence can be made more specific and the f

3t validity of some rather qualitative statements 1n replacing a discrete array by a continuous ,{'ﬁ

(L8

equivalent 1s somewhat surprising
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3.6 KARHUNEN-LOEVE EXPANSIONS FOR SPACE/TIME PROCESSES

In the design of array processors which utilize the statistical properties of the
ambient noise field, one often needs to visualize the signal, which is observed over a segment
of time and across an aperture 1n terms of an orthonormal expansion This s particularly
true for deteciion theory issues By using this expanston, one can design and specify the
resulting performance of the array processor, which operates on a random field by apply-
ing classical detection and estimation methods to the generalized Fourier coefficients of

5

;, the expanston of random variables. This procedure becomes particularly easy when the
, functions 1n the orthonormal e¢xpansion are chosen such that the Fourier coefficients
: are uncorrelated This 1s the essence of a Karhunen-Loeve representation [17] whose
4 use 15 well established in random process theory. We discuss briefly some aspests of

this representation The only 1ssue which i1s somewhat peculiar to our problem 1s
that we need to incorporate the spatial aspects, this generalization, however, 1s straight-
forward.

At this point, we are forced to make a somewhat artificial distinction between con-
tinuous apertues and discrete arrays With a continuous model we need an expansion of the
processes over the product space created by the observation time and the receiving aperture,
while with discrete array a more natural approach is to use an expanston $or ve2to: random
processes where each component represents an individual sensor output. The 1ssues in the
development of a vector Karhunen-Loeve expansion are discusscd by Van Trees [17] Since we
pursue an analysis that treats the array as having a continuous aperture, we usc the

3

g

TS BRI

0
: former expanston over the continuous space created by the observation time and the
o recetving aperture. Generally, it 1s quite easy to take the results and generate the parallel
ke discrete array or vector formulation We emphasize that the expansion is done over a
0 specific recewving aperture and observation time rather than over all space
& s We state, without proof, the follz :ing theorem (Ref 5, 6 and 17)!
b Assume
g 1 that y(t,z) is a space/time random process defined over a regron which includes
the interval T, < t < T and the spatial domain £2; and
% | 2 that y(t,z) has finite means square value,1e ,y(t z) € £2, or
3 ELy(t2)2) <o, Vt,2¢[T,, Tgl . Q
ho 1
. The essential 1ssue in the proof is the validity of Mercers theorem where the expansion region is the space/time field rather
o ¥ than just a one-dimensional closed wnterval
{%
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We can then represent y(t z) 1n an orthogonal expansion with jf-::
P
a) y(tz)=hm Z Ynfnlt 2), te[To,Tf] s 2€82, (3 46a) i@
N-woo  n=} m\.
Ty
where y,, = / dt ¢:(t 2)y(t.z)dz (Generalized Fourier
T, coefficient) (3 46b)
Ty
¥
b) dt / dz¢,* (t )¢yt 2) dtdz =8, (Orthogonal Basis )
T, Q functions) (347 g
N
A
¢ Elygm™) =Ndnm (Uncorrelated 2
Coefficients) (3 48) g

*

if, and only 1f, the Karhunen-Loeve integral equation

el

SN
A

o e

Ty
Aot 2) = / dr / &Ky (7 29875 (349)
To °

%y
“s

g

.,'_
A,

1s satisfied This s a very straightforward extenston of the Karhunen-Loeve theorem for '{"-:
processes defined solely over a temporal domain or index set. i

In general, the actual determination of the eigenvalues and eigenfunctions is
difficult. For the case of processes defined over only a temporal domain, several basic
methods have been deveioped for determining analytical solutions (see ref. 3 and

wa. L

S

A,
3

references therein) Except for some special cases, one usually must resort to computational
procedures to implement these methods The extension of these metheds to space time

i

processes would require that (a) Py(w k) 1s a rational function of the components of k,
(b) there 1s a partial differential equation, describing the generation of the process,ie ,a
distributed system model, or (¢) there 1s some very special property of the kernel which
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leads to an analytic resuit
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Even if one of these situations does exist, incorporating the geometry of the array
poses some very fundamental problems The overall situation, then, 1s that direct
implementation of this theorem 1s by no means a trivial task A similar situation exists
for discrete arrays with many elements If there are a large number of significant eigenvalues
in the expansion, this implementation rapidly becomes unmanageable with an array
containing a large number of elements Consequently, in our approach and discussion, we
use some relatively simple examples which can be approached analytically These highlight
the major 1ssues mvolved and lead to considerable nsight into the behavior of more com-
plex problems Fortunately, in many cases of practical interest, we can determine approxi-
mate solutions by “factoring” the temporal and spatial dependence. This leads to an
analysis which 1s done 1n the temporal-frequency domam Consequently, for a narrow

band situation we essentially have a complete analysis, whereas for a broadband situation
we must consider the issue of integrating our result over the band of interest For temporal
processes with stationary kernels and “long” observation intervals, we have a well-known
result that the eigenfunctions become sines and cosines, or complex exponentials, and

that the eigenvalues have the same distribution as the spectrum of the process This result
allows us to “factor” the temporal issues out of the problem.! The essential step n this
factoring 1s to assume that the solutions to the integral equatior. of Eq. 3.49 have the form

A, i LR AN | Lo

%
3

p anwgt h }

4 (tp)=—c¢e ¢ (nw, 2), (3 50) Q
T 3

where wy = 2n/T and we have repiaced the single index 1 with the double index n,m
{Since both are countable schemes, this 1s permussible ) If we substitute this mito Eq 3 49
we obtain

jnwot ;
)\m(nwo 2) e d’m(nwo'y \

1
\ i

o T AT T TR

172 1 Jnw,
= Ky(t-‘r zf) — ¢ @ (nwy:drdg
\’T

T2 Q

T/2 had jw(t-1) 1 JnwyT
= Sy(wizf)e dw J—e P (nw:$)drdf
T2 R \% wNT

’The term “factor” is somewhat since the 1 d d 15 stll imbedded in the spatial parameters
e g, the magnitude of the ware number in our plane warve model
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‘-00 (w-nwo) ?

for

The term 1n the braces of the last expression of Eq 3.51 approaches an impulse as
T becomes large We, therefore, have

1 Jnwgt
An(nwg z) — e P (nw,.2)
N (352)
§ inwgt T T
= —e Sy(nwozg,g) fI>m(nwo §ds, -5< t <7, zeQ

The final result 1s that when dealing with temporally stationary random fields observed over
a long time interval, we can obtain an approximate solution to the Karhunen-Loeve equation,
as expressed by Eq. 3 49, by factoring the complex exponential temporal dependence and
solving the equation

>‘m("“’o) <I>m(nwo:£) =/ Sy(nwo EQ @m(nwo g)ds_, z2e8Q) (3 53a)
Q

In this for.aulation we can solve for the spatial factor with the frequency of the complex
exponential assuming the role of a parameter In the case of linear arrays, Eq 3 53 1s
dentical 1n structure to the equation which needs to be solved in the Karhunen-Loeve
expanston for temporal processes Consequently, the repertoire of methods that exist for
solving this equation can be brought to bear here. For example, 1sotropic noise with its
spectrum Syo (w) sinc [k0 |Az|] corresponds to the situation with bandlhimited noise which

has prolate spheroidial waveforms for its solution Unfortunately, the temporal situation, in
which the spectrum s rational does not have direct application since 1t implies a wave number
function of infinite extent Since all of our propagating signals have a bandlimited wave
number spectrum at a given ternporal frequency, such models can serve only as approxima-
tions Array geometries other than linear ones can be quite difficult to analyze and usually
lead to copious use of the higher transcendential functions This 1s one of the reasons for

61

N

e

O [T

a1y
"

370 o e

"
s,

St s

4

»




-

I\,

ARy
«':?’
S

-

g
AN AL

s
s,

e
2

3 ﬁ‘; v,

A

"

AN

.:',\,

\»
v
Lilvi,

2

et
16304
5 J"P‘: OO\

P e

e

(54,

K
’

-....‘
LAl
A

Sy

Ea

LA

fOM MMM DA Iy 14 ISR AL DML NN DGO S KA (A STLTAT TR AR LN A

using relatively simple array geometries, for we can extract the fundamental concepts under-
lying the array processing operation without becoming emeshed in a complicated anaiysis
Even at this, however, we must develop some nontrivial spatial results for winch there 1s no
temporal parallel

In most of the problems of interest to us, the observed process r(t z) s composa } of
two components one has a finite mean square value, the other is space/tume white noise The
first of these has a well defined Karhunen-Loeve expansion while the v hite noise does not
However, across the aperture and observation interval we have for N0 tumes the identity
operator

Ny, 8(t-1) 8g(z-$) = Ny Z Pt o(r§), - ; <t <%, (3 53b)
n=1 -
zel

for any complete, orthonormal set Consequently, we can operationally use the result that
white noise s “‘white” 1n any coordinate representation, m that it has eigenvalues of N, when
projected against any complete orthonormal representation Expanding a signal with an
independent additive white noise component we have

Ki(t;7 2.8) = Ky(t;7 28) + No, 8(t-) 5oz )

[SIE ]

= T
= Z A Nt 2) 97 8, -5 <t, 7<
m=1

>

2,{eQ (3539

so that the eigenfunctions remain as they are for y{(t z) alone, while the eigenvalues become
r
N S
m m
Henceforth, we suppress the r and y superscripts
Finally, we note 1n the case of what are termed “separable kernels” we can solve

Eq 3 53aexactly The situation of interest to use here is that when the spectral covartance
function 1s composed of directional noise components, 1 e.,

N N
ikyz- k9
Sy(w )=ZZ Sy@e - 7 (354)
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k .
P (nwg 2) = Z Crnk (no.;o)eJ'k 'Z', zef
k=1

Substituting this yields

X K,z
)\m(nwo)Z Cru(nwy)e
=1

i N (k 'Z—k - N k .g-)
az) Y s g SHEHD Z Cog(nesg)é=2 2
)

Q =1 =1
N N N
_ kiz
= D ML s ) ) Cnwgag sincg [iykgl
=1 =1 =1
where
ke
/ ez,
Q
smcg(l_()é

AQ
The solution to this is given by

Ap(nwg)

v L-[S(w)] {smeg(Ak) 1] Cpnwy) =0

where

S11(nwgy) S12(nw,) L

(Stnwg)l &
S2,(nwg)  Spp(newo)
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(355)

(3 56a)

(3.56b)

(3 57a)

(3 57b)

{1
3

&

ES

PR Ay

TRy,

.
a3

TR

'

e

Ryects

el 18

¥

doF ey ¥ deny

e

I

@}

b




RN L NPT S N P L

x.'\T,._...‘J._--._-,- JEP SN R S A

i

1 smc[kl-kzl ...
[sncq(Ak)] & (3 570)
SlnCﬂ“_(zvkl 1 1
L J
le(nwo)
Crnw,) 8 (357d)

This 1s 2 homogeneous matnx equation which has N solutions at any given frequency
(nwg) We will discuss the solution to 1t at various points where we enicounter noise fields
with directional components.

We now constder the application of the results to our fundamental probler of interest—
the design and performance analysis of optimum processors

4. OPTIMUM ARRAY PROCESSING FOR PLANE
WAVE SIGNALS

In the previous sections we have examined the representation of space/time random
signals and the response of apertures during observation Until now, the two most important
quantities were P(w k), the distnbution of a homogeneous space/time signal in temporal and
spatial frequencies, and g(w k), the response of an aperture to a plane wave signal with fre-
quencies w and k In the process of doing this we have now developed the concepts necessary
for describing array methods

aperture noises all have a fundamental wnfluence. The classical problem 1n array processing
consists of finding the optimum beam pattern within the constraints of the array geometry for

observing and/or detecting a plane wave signal with a wave number lyr Usually this 1s done n

a somewhat intuitive manner Beamwidth and sidelobe level must be traded off and nulls are
positioned, all under the influence of the constramts imposed by the array geometry and the
noise field encountered. The methods of optimum array design essentially address the problem of
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In the design of an array processor. the structure of the desired signal and the ambient and
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' “ giving a rationale to this procedure 1n that the “optimum™ processing method 1s specified for :f.
) . a given array and noise field. Naturaily, we must make our definition of optimality precise, tﬁ
and the formulation of and solution for the “optimum” array processor 1s the topic of this &

{ chapter. E

{ ;5 Like many problems in which linear processing, quadratic performance measure, and/ ::.‘
. 5 ‘. or Gaussian statistics are introduced, this one 1s also quite robust in that the same solution gt
‘j can be arnved at via several different methods. We have chosen a formulation which empha- *
X sizes the linearity and quadratic aspects of the modeling. Vartous app aches have been i—
P umfied for discrete arrays [18] L"
:\ 1 We focus upon processing for signais which are plane waves At the end of this section ;x
‘}"z we comment on array processing for spatially spread signals, 1 e , the signal 1s composed of a ﬁ
“?;5 ] possibly uncountable number of plane waves Despite their importance as a more reahstic E—
- model for many probleins and the numerous parallels to temporal random signal detection, E
ol the literature does not have many contnoutions on spatially spread signal detection. We .2{

f shall subsequently discuss some aspects of these problems. ::

One of the important mathematical entities introduced here 1s the inverse kernel

r' P

This 1s essentially the continuous analog to an inverse matrix and frequently appears in
detection and estimation problems. Many of the operations appropnate for matrices have

A

ol

parallels in the continuous case. This function 1s important 1n our analyses in later chapters
Therefore we emphasize 1ts importance early. Van Trees offers a more detailed discussion of
this function [3].

In this section we have a very concise formulation and solution for finding the

NI |

fa - |

r‘ optimum beam pattern, or array processor. This solution can be invoked to explain how large P :
21'_, numbers of array processors operate, from superdirective arrays, to endfire gain, to null place- 3

) ment procedures, and to sidelobe level effects. It provides a unified approach to the design of }:
P beam patterns and array processing. One of the goals of our later chapters 1s to develop enough S
[ mportant examples so that the mathematics become more transparent and the undertying a
z theory can be used in an intuitive and practical manner i:;
s 7
.. ‘$_

4.1 OPTIMUM WAVE VECTOR RESPONSE FUNCTIONS AND MINIMUM
VARIANCE ARRAY PROCESSES

SASCTI S T

WA | § et

Our mathematical formulation for determining the optimum beam pattern reflects
our ntuitive concept of how a good array processor should perform. We want to observe a
plane wave signal, which we call the target, with temporal frequency w and spatial wave

IRESEAS

number k. To do this we want to direct a beam in this direction and obtain a response which
has a minimum of interference caused by ambient and sensor noise We may want to
determine the signal wave shape 1tself or we may simply want to measure 1ts statistics ’
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Mathematically, the operation of directing a beam 1s introduced by requining that

oz
golw kplkp = / Gy(w Zl_lgt)J T dz=1 Vw @t
2

b

while mmmizing the effects of the noise leads to the requirement that the output noise
power

0‘2) (wlky) = Sy(w) = / £ G0 ZkD)Sp(w 28)G*(w S [kp) dzdd  (42)
Q

be a mmmmum Note that og (wlky), the mmimum noise, 1s a function of k and that
Sn(w .z,$) 1s the temporal frequency spatial correlation function observed across the array
aperture. The constraint of unity response is a convenience. We could require only a finite
response; but the result is deterministic, so we could arbitranly scale it back to unity.

If the wave nuinber versus frequency for a plane wave signal 1s given by k(w), then
requiring

UMW SN O ST N R L, Ti e T T AT

e

golw k(@) [kp@)] =1, Vw 43

will lead to an array processor which observes this signal undistorted This approach has been
used to formulate the optimum distortionless filter for discrete arrays

We are presuming that g(w.g_l&r) can be designed independently for all w, 1.e , the
solution at wy is not influenced by the solution at w; The total broadband output nose for
observing a signal is given by

2 [T 2 dw
s oo - Z; ao (w I_lg-l(w)) “In @49
TRy

A pictonal representation of our formulation 1s indicated in Figure 4-1

The solution for the optimum beam pattern can be found by straightforward
apphcation of the cajculus of variations where we impose the constramt using a Lagrange
multiplier (). For optimality we require that for all choices of 8G(w.zlky) that

1 We use the notation
9w k;kT/
10 represent a beam pattern in k for a beam “directed” at wave number&.r.u N

gl kplkpi = 1
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/ {Go(w 2}k7) + €8G (w 2]k7)]
(93]

* 81( 23 [Go*(w Elk) + €8G,*(w ¢ k)] dzdg

(4.5a)

e
+ B(w) [[(Go(w zl k) +€8Gy(w z lkT)]eJ" z
Q

k- z
+(Go¥(w:zlkp) +€8G*(w zlkphe T ) dg}

e=0
or
jkpz
0=2Re 8Gy(wzlkp Splw 289Gy *(w.Slk) + flw)e dzd¢
Q Q
(4 5b)

AMBIENT

NOISE FIELD

st) SIGNAL
ks SIGNAL DIRECT.ON

Gle Klky)

ARRAY QUTPUT:
r{t) = s{t) + n{t)
Riw) =S(w) + N{w)

Figure 4-1. Pictorial representation of the desigr of the optimum beam pattern.
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This implies that

ikz
8,(w:2,8) Go*(w L] kp)dE =- Blw)e s 268, Vw 4.6
(1]

We first need to eliminate the Lagrangian multiplier f(w). This can be done by applying the
constraint of Eq 4.1, and we have

)= é / Gylw z|kpSy(w 28)G*(w: | ky)dzdd @n
Q

which implies that f(w) is a real quantity
Substituting this into Eq. 4.6 yields the implicit solution for G(w:z | ky)-

/ Sp(w.z8) Go*(w | kp)dd

Q _ Jkpez
r e
j / Golwiz'| Kp) Sp(wizs £) Gy*(w:t'| kpdz! o @38)
Q0
zeQ, Vw

Eq. 4.6 specifies the optimum beam pattern as the solution to an integral equation
which appears often in solving temporal detection and estimation problems. Some reflection
should indicate that we have a problem almost parallel to that of detecting a known signal in
colored noise. We have a known signal structure, e’—T'E, plus a background of spatial colored
noise, n(t:z). With the exception of a normalization constant, the integral equation for the
optimum array weighting G(w'z lkT) and the optimum correlation detector are the same.

The solution for G(w.z IKT) can be found in a number of ways. First, we observe
that we really want to solve

JkT°2z

/ Sn(@2d) GHwpdg =€ T > Z€S Vo “.9)
Q

and then scale the solution in amplitade to satisfy the constraint

We want to iutroduce the spatial generalization of the inverse kernel. The defiming
property of this function ss specified by
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.[ Sp(wzd) Q' DA’ = 8gz-H . z.feq, @ 10)!
Q
1¢€., the spatial functional analog of an inverse matrix. We also have

/ QwizZ) Sywz P dz' = boE-5),  z.{eQ “1in
Q

which corresponds to the result that right and left, or post and premnverses, of a matrix are
wdentical. One of the important properties of the inverse kernel which we use relates to 1ts
expansion 1n terms of 1ts spatial eigenvalues and eigenfunctions. Following the temporal
theory [3] for example, we can expand both S, (w z,0) and Q (w:z,{) in terms of the eigen-
values and eigenfunctions found in Section 3 6 in the discussion of Karhunen-Loeve expan-
sions Mercer’s theorem asserts that we have the expansions

o0

Spw.z )= Z Ap@ep(w.2)Pp*wl), 2z,{eQ (4.12a)
m=]
o -l
Q(wzd)= Z A @@l @D, 2R (4.12b)
m=1

where A, (w) and @, (w:2) are the solutions to Eq. 3 53a. In most cases n(t z) 1s composed
of a correlated, or finite mean square, component and a white one. For this we have

M) =Ng + 2 () (4120

where )\rn (w) is the eigenvalue of the correlated component We then have

. 1
Qwizd) = Z(No«r?\:,n @) Bp(wz) B D)
m=1
1
=§0—[a(t4) S -Hw:zl)), ztef (4.12d)

1 The functton & n(_z-{') is an impulse, or generalized, function which is defined only across the array or aperture St Conse
quently, no ssfting property outside of this doman is imphed. The same function was used in discussing sensor noise.
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where

oo Ay (w)

H(w:z )= HwDP(w), z,ief (4.12¢)

= +AY
m=1 NO )\m(u)

All of these results with mverse kernels are complete duals to the temporal situation therefore
we refer to ref. [3} by Van Trees for a more complete discussion

o Returning to the exphicit solution for G(w.zlkT) we conjugate Eq 4.9, cmploy the
symmetry properties of S (w.z,$) and then post multiply by Qn(w'g',g) and mtegrate with
respect to §. Using Eq. 4.11 this yields

%

W

‘JkT'z
Gylw Stkp)=-B(w) Qwz)dz, $el (4.13)
Q

A e
At

Apply the constraint of Eq. 4.1 and we have

ikys!
Blw)= Qn(w zZ’§e ' a'f . @ 14)

and the final solution for GylwElky) is
‘ id -JkT"Z
2 / e Quwzddz
G (w:¢ |kv) , gef 4 15)
olw:d ky -_lkT S "

Quw.z' e siz'ag’

The optimum beam pattern is given by
-Jk 'z k§
Qp(wizfle  dzdf
00

k-2’ ikt
¢ Qulw 2 dz! g’
Q'R
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Note that g (w kTlk) 1s umty Ths last equation 1s particularly important in our subsequent
analyses where we use 1t 1n contrast to some of the more conventional beam patterns discussed
earlier Equations 4 15 and 4.16 constitute the solutton for the optimum array weighting and
the optimum beam pattern. The fundamental 1ssue in determining a solution 1s finding
Qulw 2.0). In general thisis a difficult problem Fortunately, for the examples of interest
we can determine the inverse kernel.

The only remaining issue 1s to find an expression for the output noise power og(wllgr)
of the optimui beam pattern We simply substitute our solution mto Eq 4 2 Using the
properties of the mnverse kernel we obtain

-1

2 Jkz ik
o (wlkp= e TQuwzfle T dzdf “417)
Q

We should contrast this to the output of an arbitrary beam pattern

0wl kp) = [ / Glw:z|ky) Sp(wz$) GHwif|kr) dz df (418)
(9}

The term ag (@ k) 1s the mmimum value that 02(w Ik) can obtamn over all chorces of G(w:z| k).

4.2 HIGH RESOLUTION ESTIMATES OF THE FREQUENCY WAVE NUMBER
FUNCTION P{w:k)

One of the most difficult aspects in applying techmques which utihize the process statistics
15 deterrmning the actual statistics themselves There are a number of ways to do thus, and a
large number involve measuning sample covariances of the observed signals In array processing
work, this 1s typically done as a function of frequency. At each of the array locations, a data
segment 1s first transformed and then used as in the calculation of the estimate of the
covanance, 1 €., we have

N
1
ﬁ(w:z,g)rN- Z Ry(w:2) Ry*w §) (4 199)
n=

where
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(n+1)T=AT
Ry(wz) = / r(t z) eJWt gy (4 19b)

nT=AT

The important point 1s that one obtains é\(w 1,_&:) only across the aperture, or array The problem
now 1s to convert this into an estimate P(«o k) Since the aperture is always fimte we can not
simply transform the estimate S(w g,g) and obtan P(w k), no matter how accurate our co-
vartance estimate 1s. Thus has led in the temporal theory to window trade offs and the in-

direct, or Blackman-Tukey, spectral estimation procedures [19] Several authors have

brought optimum array processing to bear, and 1t has even had 1ts impact on the estimation

of purely temporal processes [ 18, 20-22]

We observe that 1f we were to measure the notse power origimating from direction kT we
would direct a beam in that direction and try to suppress all other contributions of the noise
field as best that we could Thus 1s yust what the optimum beam pattern does Now if we
measure the output noise power, a truly ideal beam pattern would yield only the noise power
stemmuug from direction k, smce it responds to signals only with that wave number. The hugh
resolution method simply asserts that 0(2)("-’|KT) 1s the best we can do n this respect, and 1t
represents the power 1n the signal field with wave vector kt with the remainde. of it suppressed
1n an optimal manner 1e., it 1s an estimate of P (w k1) Consequently, to find this high reso-
lution estimate, P (w k) we find Qpfwzf) from the sample covanance and compute
P(w k) as

-1
dk1°z kpef
Bywkp = / f T8 wzde |zt (4 20)
QQ

In essence, this procedure makes all the optimum trade offs in selecting the best estimate for
finding Q(w k) Consequently, 1n relating our subsequent work 1o using Q(w :k) for high
resolution estimates for P(w k) we should examine how close o (w kT) corresponds to
P(w k). .

One of the less satisfymg aspects of using this high resolution measurement method
is the difficulty n analyzing 1ts estimation accuracy This contrasts to the classical procedures
where the effects of aperture extent and shadings employed can be analyzed in terms of
confidence intervals. The nonhineanty introduced by the mnversion operation for Qp(w 2,8)
leads to complicated analyses.

4.3 FREQUENCY WAVE NUMBER ANALYSIS FOR OPTIMUM WAVE NUMBER RESPONSES
Before discussing specific geometries, we rcexamine briefly our analysis of optimum

beam patterns in terms of a frequency-wave number representation for the signals From Eq 4.2
we want to mimmize the output noise power subject to the unity response in the direction of
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the target If we have a noise field consisting of a propagating component plus sensor nose,
we have

. )
AR ARk

"o

Pt rots

wpoo &

Spwzd) = / [ pwes @0 &N 5ot @21 e

doo Lo emN E'i:

2

We substitute this into Eq. 4 2 and obtain é'é

et

’7

2 -~ B 0, . 2 dk
04 (wlk )-/// go(wk|kp) ¢ P (w.K) ——
o T. | [+) | Tl n (21r)N

£
ok
B
+No/‘ IGy(w:z k)| 2 4z (4 222) :‘?l
Q :é
2
subject to the constraint
golwkr|kp) =1 (4.22b)

When we interpret the design of optunum beam patterns in the frequency wave
number domain, we can observe that we want to minimize the overlap of the frequency wave
number function and the beam patterns and the integral of the magmtude squared of the
weighting function across the aperture subject to the target constraint. Generally, mmimizing
the two terms in Eq. 4.22a involves a trade off. Because of the constraints of the array
geometry, minimizing the first term introduces high sidelobe levels. Since we have

2
(w.klky)
/ IG(szkT)lzdz>|.g__AQﬂ \ @23)!

Q

sidelobes which are in excess of unity increase the second term using this inequality. Generally,
any increase in the sidelobe level increases the contnbution of the aperture. or sensor noise,

to the output noise level. As a result these two effects must be traded off until the optimum
compromise for mmimizing the total output noise fevel 1s obtaned.

S
s
1 1t would be very usefd if we could use a general form of Parseval’s equality, ie, ’it"w

ﬁGIu 2%z = f f f ot i =2 o
A (v %

Unfortunately, the integral on the nght fails to converge in meny cases
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4.4 BEAM PATTERNS FOR SPATIALLY SPREAD SIGNALS

In many physical situations, the signals which are the object of the optimum array
processing, or beamformer, are not true plane waves in that their frequency wave number
function 1s not impulsive This may occur in a multipath environment in which local
spreading 1s due to scattering, and gross spreading 1s due to separate travel paths Figure 4-2
Hlustrates a posstble propagation situation leadng to a spatially spread signal situation The
most evident effect observable at the receiver 1s that the magnitude of the signal covan e
decays as a function of the separation of array location

We model the signal as a general space-tume process s(t z) with a spectral covariance
Sy(w:z,5). In the special case of a plane wave structure, we have

ke (z?)
S(w z,8) = Sp(w)e 424)

with an impulsive frequency wave number function In many situations concerning spatially
spread signals, the frequency wave number function occupies a narrowband about k. The
principal difference in analyzing spatially spread signals involves therr representation across

the receiving aperture In the plane wave situation, the statistical representation in terms of a
Karhunen-Loeve expansion 1s one dimensional, 1.e , only one eigenfunction 1s required in the
representatton. In the spatially spread situation, more than one eigenfunction 1s required For
example, with gross multipath spreading we need at least one eigenfunction per path, while
with local scattering there 1s an upper bound, which 1s determined by the area of the array and
extent of the spreading, on the number of eigenfunctions required to represent effectively the
signal across the aperture In most cases of interest the number required 1s small so that we have

el <12

) M
1 Jneot zef
= . & \ (4 253)
s(t'z) = 2 I e Z ${(Nwg) Py (neg 2) .
n=-=x m=1 wo = T
and
M
S@ZH= Y Mg (g 2) Slncs, ) 4 25)
m=1
with
E[Sm(nwo)s*k(Qwo)] = Am("‘-"o) 5mk 5n2 4 25¢)
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Figure 4-2. An example of spatial spreading due to giobal path structure and local
scattering of thermal structure.

PYIITE
G

75

er:

|




AT K ELEER KR TS TR N A i W NS Ty R R SR Y

[ e
&

-~

19
K £ The structuring of the design of the optimum beam pattern is somewhat more subtle ‘{
g ,‘é than that for a single plane wave n that we no longer want simply to direct a beam at a :_‘:
§ %} specific wave number. In our formulation, we generalize this concept by designing a set of oy
{: beams, one for each of the M eigenfunctions in the spatiai representation of the signal across ‘3
."'v;: the aperture For each of these beams we require that the response due to the ambient noise f:r.
%i‘ be a mimmum under the constraint that there 1s an undistorted response to the eigenfunctions ::'.j
’\*," for all possible signals. Just as we noted earlier, we could alternatively formulate the opti- :3::
"'J mization 1n terms of a detection theory problem with the resulting analysis leading to the same “5
spatial structure that follows here %

LS

We have

A

RIS

=

¢ ]

mn 62 ()= / [ G(w 21$,) Sp(w 2.9) G(w zlp) dzdg (4 262)
(35}

‘
3 ,"g 3
5%

Bt ut
Zos

with

HERES

A

3 on a% e

it
bty
T

M
[ G(w zlp) Z Sm{@) Ppp(w 2) dz = s(wlg)) (4 26b)
()

m=1

o .Ff{.»

o

for all

M v
S(wl¢,)' e
e

=1 3

X2

)

B

The optimization procedure 1s quite similar to that which we did earlier so we just mdicate
the results. We define

Ao g
14 %

P (w.2)
' 2w = : > 2€82 (4.272)
8 .
¥4 Pp(w 2)
2
Gy, Golw 7o)

Gywz)= - (4 27b)

rt,

bIEE
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L‘:_;‘
£
Aw) = f 8f (@ 2) Quw 2 B(w:3) dadt (4270) fi:f
Q Q
9
The optimum set of beam patterns are given by :2
Es%
Gow:$)= Alw) / ofwp Qwzd dz, teq (4 282) i
Q e
Ee
k-t &
Golwk) =A‘l(w) d(wz) Qn(w‘g,g)ej' Sdz df (4 28b) .
Q

i
LS
)

The mean square output level due to the signal component 1s given by
2
E| JIG(w:z) S(w 2) dzl " |=Ap(w) (4 29a)

while the output due to the noise components are given in matrix form by

\F
gj @ =Eff | Glw 2N 2) d| Gylw HNw:p) d?

GEE

G

Aji(w)
= 1
[A———-L——-u(w) o (w)] (4.29b)

AV

a1

e

In summary, the signal components each pass through the filter undistorted, 1e., they
are unbiased. These components have a diagonal covartance matrix as given by Eq. 4.294 The
noise components are correlated for each beam and their nose covanance 1s given by Eq. 4 29b
Various means of combining the signal can be considered according to the criterion imposed.
We consider this further in Section 8.
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PART 3-PROCESSING METHODS

5. LINEAR ARRAYS

The most important aperture is the linear, or hine, array It 1s the sumplest structure,
yet the analysis of it yields many significant results which more complicated structures
change only 1n detail, but not in substance. Much of the analysis of thus array parallels that
of temporal processes observed over a finite time duration Often this 1s a distinct advantage
since only dual results need be developed This can also prove to be somewhat of a hability as
several important aspects of the analysis of array processing do not appear until more
complicated geometrnes are mtroduced. For our purposes we consider conventional and
optimur; array patterns when operating in different types of notse fields Then we consider
some general feature of the processing, such as wave number analysis, supetdirectivity, and
null placement where we use the linear array as a discussion vehicle

As introduced 1n Saction 3, the receiving aperture consists of a line of length L,
centered at the origin (for convenience only), and oriented with a tangent vector 1n the
direction specified by the unit vector a,.

Q={g=233, 121 <L/2} [CR))]
as illustrated in Figure 5-1.

The beam pattern of the conventional array directed in wave number direction ky
is found to be (see Eq. 3 9)

L2
k)= — / SOk g gy sinc[(l,g-l_(_-r)'_aak] .2
Lin 2

When we apply a tnangular shading of the form

L[, 2
g0 = L [1- L },; 12l <L/2 53)
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Figure 5-1. Linear array of length L, orientation a,

—r

we obtain a beam pattern, or wave number response, of the form (see Eq 3 12)

e

&
s

L
glwk)= sinc? [@-l_c_-r)'gaﬂ 54

Both of these are standard array patterns. Others can be developed, for example, the spht
array illustrated in Figure 3-3 We are pnmanly interested in optimum array patterns and
their performance og(w k) for various noise fields We contrast these optimum patterns and
performance with those obtained conventionally to determine how they operate in obtaming
their improved performance We also compare the performance to determine whether the
additional eftort 1n optional processing 1s worth while

) 5.1 LINEAR ARRAYS AND A SINGLE DIRECTIONAL NOISE SOURCE

The simplest nontrivial problem which one can analyze for an opttmum processor
is the linear array combatting a directional noise field as shown i Figure 5-2. This problem, in
spite of its apparent simplicity, yields a surprising number of useful results and an msight into
the general aspects of optimum array processing.

We have a directional noise source of power level S.,Q(w) located at k, = (w/c) a, =
Q27/N)a, Consequently, the colored component of the noise 1s a plane wave

za,
n{tz)=n, t-T‘ 5535
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a5y From our earlier analysis in Section 2, the temporal frequency spatial covartance function
%5) of this coniponent 1s given by
¢
s i (2:)
b Jv Snc(w'z,S) = Sno(w)e B (56)
RY
while the corresponding frequency wave number function 1s given by
Pnc(w k= Sno(“’) a(k-ky) 57

We also assume that a white noise component due to sensor noise 1s present In light
of our earlier comments regarding this class of noise process, we have

Sw(e0:28) = No 0 D) 55)

The total noise field is specified by

Ikp (z%)
= Sp(wzf)= Sno(w)e +N, 8 (z9) )
e

o

A

X
#Le%Y

TARGET “LOCATION"

WAVEFRONTS

A

- B

%

NOISE “LOCATION”

B
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S

¥
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g.

W
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53 kr

g

1,

<

-

Figure 5-2. Linear array with directional noise source
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We are interested in determming the optimum precessor and its perforinance for
detecting a signal at kp The first <.ep in designing this optimal processor is to find the
inverse kernel. For directional sources this is particularly simple because the discrete spatial
frequencies of the noise lead to a separable kernel with a finite number of eigenfunctions
The Karhunen-Loeve integral equation 1s given by

12 1kn2,(%-8,)
Sno(w)e 9(22)=M(%), 19, i<L/2 (5 10)
-L/2

The single non-trivial solution 1s

1 kyz
dwz=—e ", {_Z_=an, lel <i}=9 (s t1a)
L

ELY e dads | oo g el g g e [} L e e pia e s b £ USSPy C).”I:I'

A=L Sno(w) (511b)

The inverse kernel is therefore given by

1
Qw2 = IR [3g (29 -Hw )]
o

4

A
il

-

2

2

v
'

}\.

:f

. (5.12)

LS, (w 'z k
=L s @ ———— < s LEeS &
B Q\z)- * 3
Ny L Sno(w) +N, L é
A From Eq. 4 1 we have that the aperture pattern, or weighting, 1s given by E
5"‘3 0 &
4 j§ G(w zlkt %
=2 L2 1 Lsno(w) c"l‘(“.'qaarg’) kTea.8 ﬁ-
e a9 —18q(R8y) ~ s — 5T %2 2
ol N LS, {w)+N, L E
W L2 O o :
e = ——— (5.13) i

o L2 L2 . LS, (w) iKp 2,0 0) [

. T8 1 Ny e k2.2,

ok a2y fde, e —6g(® ) - —————— = JET 228 &
e 2 N, |9 LS, (@w)+N; L g
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hrza! - Sno(“’) sincl(k -k)* L] ot
LS, @ +N, LENE ]
L
LS, (@ ze, ;“ "ty s

42 anc?k kpa, =
ik LS, @+N, *° [(’-‘HKT) 4a 2]

Similarly, the beam pattern can be found using Eq 4 12 Ths yields

g(w.kik)
. L Sno(w) . L L
sine (krkp)'a, 5|~ m sine {(ky k) 2, | stnc |(k-k,) 2, 5
= ° (5 14)
LS, (@)

1 inc? | (k k1) L
LS, @+N, [P %3]

The operation of the optimum array can be interpreted as a null placement operation
which depends upon the relative strengths of the directional and white noise If

L Sn (w)
(2]
<<1
NO
then
B L
g(w ki k) = sinc {(kky) 2, EY 5 15)

Thus is the conventional beam pattern which has a uniform weighting and is optimal when
only white noise is present. Conversely when

LS, (w)
o
—>>1
N,
then
L
sinc [(l_(-l_gT)'ga 7] - sinc [(]-(n“-ST)'ﬂa %ZI simc [(L—kn)' 2, —,,I:]
g(w.kikp)=~ - = “=(516)

I -sinc? [us,,-lm'e_-a %]
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In the direction of noise source, this beam pattern has the response level
g(ew kpl ky) =0, 17

that 1s, a nuil is placed there Placing this null 1s done at the expense of increasing the output
noise due to the white noise component Specifically, in this situation the white noise 1s
increased by a factor of approximately

Jfw s

over the minimum level obtamned with a uniformly weighted array If the nosse and target are
widely separated, ie,

L
(l_cn-l_or)-ga? >> (5.18)
the null placement has no effect However, if

L
(Kn'KT)"-’aT =0, (519)

then the whte noise response level is increased by a factor of approximately

4

1 L
[? (En'lﬁ'r) "a, ? »

which is a very dramatic increase. Consequently, in designing array weightings with the target
and noise close together, one follows a null placement procedure up to the point that response
due to the white noise becomes dominant.

Figure 5-3 1llustrates a situation in which the directional noise 1s dominant At separa-
tions of 30° the beam pattern resembles that of a uniformly weighted array. At 10° and 3°
the pattern has very strong nulls near the noise term Funally, at 1° the null can no longer be
maintamed for the white noise has become the dominant consideration due to the large side-
lobes appearing in mamtaining the null Note that in the optimum beam pattern response, the
peak does hot fall nght at the target location when the noise direction 1s close to that of the
target Effectively, it 1s displaced over to facihitate ﬁlacing the null. We shall return to this 1n
subsequent discussions. The performance or noise power output og(wll_(-r) for this array and
noise field can be found using Eqs 4 17 and 5.12. We have
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:
"

2 Lzsno(w) 2 L B :‘%
={— —— K)ea, — &~
% @lkD =3 1L Ts @, ["—‘" kD23 ] g
o
i
LS, (w) -1 §
o 2 L ¥
L 1+ T l:( l-sinc él_(n-l(_-r) ‘2, -2—)] .‘(.
v (520) L'_
No LS, (w) »
e 1+ —N°-—— Y
P 0 o,
g B
Loy Y
§ We see that all spatial aspects of the problem are incorporated in the parameter ;:
A L
p =sinc ‘El_(n-lgr)‘ga 7] (521)

while the strength of the interfering noise appears in the ratio

AR, PECE e |

L Sno(w)

R
e o
.,

Ny

>

In Figure 5-4 we have plotted the output noise power ag (@] k) versus p relative to a
reference level of No/L

%l

TR S LM B

[: In interpreting this figure we first note that when the target and noise are widely
z
dei separated, i.e.,p=0
b ? 2 No
RN 0 (wlkp) =— (5.22)
28 o L .
AT
B while when they are coincident, i.e., p =1 4
- =
b
L + &
az(wlk )—E‘-’ 1+—sn—1(2 (523) &
o ML No =

=

Y
)

In terms of the performance using optimum array design, the most important parameter 1s

f
the resolution, that 1s, how close to the directional noise source a target can be before the ::%‘
noise power increases significantly. Alternatively, when using “high resolution” methods for '{‘;
noise field measurements, one wants to know the resolution of these methods E.J'
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Since the spatial aspects are incorporated 1n the parameter p, the resolution is
determined by this parameter. However, the value of p at which the interference becomes
significant 1s dependent upon the parameter L S, (w)/ N, as stronger interference degrades

o

the performance faster.
For discusston purposes let us define the value of p which leads to a 3dB performance
loss by p34p or a 3dB increase above the background white noise. We have
LS
, no(w)

=2 (5 24a)

or

L Sno("") \'

1+
NO

1
= — e 5 24b

Ny

This value ranges from one, as a 3dB reduction never occurs for noises with a level less than
(L/NO)'I- tol /\/_f for strong interference Consequently, even for strong interference one
always can obtain a performance with 3dB of the hmiting white noise level providing the
spatial geometry yields a p less than 1A/72. Equivalently, the resolution can be defined by

L
sinc (}g-rkn)'ga—z- > INT (5.252)

The response to a directional signal will be less than 3dB above background outside of this
region. Solving this yields

L
(rkp) gy <139 (5 25b)

For broadside geometries

[/}

T S 2.78 444
— —} | —— = —

2 Icos(2 2)

Swam T 1, (> 262)
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4 [222
0 =2snl (T,\) rad, (5 26b)

where L, is the length of the array i wavelengths. Figure 5-5 illustrates a typical broadside array
configuration for directional noise and target.

SEPARATION
ANGLE

NOISE
DIRECTION

TARGET
DIRECTION

Figure 5-5. Broadside array configuration for directional noise and target

For an array larger than one half a wavelength, or Ly >1/2, we have

444 4°
0= rad = -2&
15Y 15}

(5.27)

This should be the “critical” separation angle for a linear array using “high resolution”
methods in the broadside case. (Note that we assumed no other sources to be present in

the noise field )
As the array 15 “beamed” off broadside, the effective resolution becomes smaller.

Let us consider the endfire situation as represented 1n Figure 5-6. Here we have

278 444

cosf -1 = AL/ = —T)\_ (5.28a)
" 22\
6,=2 (sm'l )rad (5 28b)
Ly
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Figure 5-6. Endfire array configuration for directional noise and target.
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WN?
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bed For large arrays with Ly > 1 this becomes e

; 4

; d

i 0= .942/\/']:; rad = 53.6°A/ E)\ (529)

g Observe that the effective resolution of an array changes from Lx'l dependence at broadside %

a5 to one of 17\'” 2 for an endfire configuration t

- N Before itlustrating the performance of the optimum beam pattern, we discuss the 5{;}

. performance of some suboptimum beam patterns. In this context, we consider two commonly %

' used array shadings, umform, or conventional, and triangular; and then we contrast ther .i

% 2 performance to that of the optimal array processor just analyzed. “:

?,:( For a target with wave number _kT, the conventional or uniformly weighted, linear F :

N -

:‘ array has a weighting L'ﬁ
rgn

sl P03

= 1 -tky3,8 L 2

54 Q)= — a” | =

é; Gw?) L e s 1> > (5.30) e
I

As discussed earlier 1n Section 3, this weighting produces a beam pattern
By X L

{ gc(w:k) = sinc | (k)8 1= p (53h
The mean square noise output, or the performance for a single directional signal and white
noise environment follows directly from Eq 4 18. We have

N

L
oz(wl kp) =8y (@) sirc2 [(k,,-&T)'ga 7] + To
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NO LSn (w) L
- # sinc? I:(l_(n-g-r)-ga .2_] +1 (532

A triangular shaded linear array directed to a target at wave number K has a weighting

2 -ikp-2,®
] e

Grwn=— [1-+ s (533)

A similar analysis shows that the beam pattern generated 15 given by

griw k= smcz[(K'l_ST)'!a %] (534)

while the mean square noise output, or the performance, versus this noise field is

2 L1, 4[No
o (w]kp) = Sno(w) sinc? [(k ke, -Z] + ;( L
Ny | LSn (@) 1 4
= =2 4 . L], 4
L N, sinc [(kn kT)°3, 4] + 3 (5 35)

In Figures 5-7 through 5-9 we have plotted the performance, or noise output for the
optimum, untform, and triangular weighted arrays for var- s ratios of the directional signal

power to background white noise level We see that the optirium array weighting combines the

desirable features of both the umiform and triangular arrays Its enhanced performance 1s
particularly significant when the ratio of directional to white background noise 1s igh In
this situation optimum design of the array weighting 1s worthwhile providing the results are
not unduly sensitive to the model assumptions

The next observation concerns the sidelobe structure of the noise power response
versus k1. When the directional norse 1s high, 1.e., L Sno (w)/Ny >> 1, then the u1delobe

level of og (wlkT) for a uniformly weighted array goes as [2/(2n+]) 1r]2, or from 13 dB
down, while o% (‘*’IKT) for a triangular weighted array goes as [2/(2n+1)7] 4, or from 26
dB down
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With the optimum array weighting, Eq. 5.20 implies that the maxnnum sidelobe leve: of
o%(wlk-r) goes as

LS, (@ N , 2\)
Ny [(2n+l)1r]
S, (e)\!
1.05/ (l—)
NO

This indicates that the sidelobe level 1s inversely dependent upon the directionai noise.

For example, in Figure 5-7 the sidelobe level is down approximately 21 dB. Naturally, there

is a premum to pay for this. As we have previously discussed, the optimum array shading is

a null placement operation in the situation of strong directional noise. Unfortunately, this
becomes a very sensitive situation requiring precise knowledge of the direction of the noise
which 1s typically not available in an experimental situation. This sensitivity to direction is
quite evident when one examines the beam pattern As indicated in Figure 5-3 the beam
pattern has a very high sidelobe structure such that a small amount of error between the actaal
noise direction and the null location would lead to a very high response to this nosse.
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6.2 LINEAR ARRAYS WiTH TWO-DIRECTIONAL NOISE SOURCES

The optimum array achieves an enhanced processing gaiu by effectively displacing
its beam pattern to null the noise If the target 1s located between two noise sources this pro-
cedure is not viable, for one would have a strong response to the directional source due to
sidelobes on the other side of the beam In these situations, optirum processing can still
mmprove the array performance although, depending upon the geometry, not as much asin
the single noise source. A particular example of two-directional noise source field, as shown
m Figure 5-10, introduces important issues in the hmited “high resolution™ mapping methods
and superdirectivity We constder ihe 1ssue of determining when two noise sources are
resoluable, or, from an optimum beam pattern viewpoint, we determine if we can create a
beam that can observe a signal located between two noise sources This problem 1s a very
special case since we can obtain closed-form expressions for a noise field composed of an
arbitrary number of sources Insight, however, 1s lost 1n the matrix manipulations which are
necessary. Moreover, this problem 1s simple enough that we can obtain considerable physical
nsight by carrying out a detailed analysis If we assume that the noise sources have the same
temporal spectra, then we have a spectral covariance function of the form

S (@) (kD) ko@D
Sp (wk=—— {e e 39
o 2

Substituting this into the spatial Karhunen-Loeve Eq 3.53, we can obtain a matrix equation
since the kernel 1s separable, 1.¢ , 1t cont: a finite ber of nonzero eigenvalues For a
linear array of length L, oriented with array tangent a,, we obtain the eigenvalues and
eigenfunctions

5, (W)
A =L 5 (1 + pky ko)) (5.37a)
Y@+ ¥(®)
®= __l______Z____ s II<L/2 (5.37b)
Q11+ plky k2
Sp (@)
0
Ay = L—'E—— (1 - p(kyky)) (5.37¢)
V1@ -9(®) ‘
Dy(8) = ! 2 s <L (5379)

(211 -p(k; k12
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Figure 5-10. Geometry for two directional noise source field.

where
p(k) =sinc (L'ga—;'—) (5.37¢)
. Ikjraf
&)= JT , 19<L/2 (537)

We observe two features charactenstic of the eigenvalues and eigenfunctions of a
directional noise field. The eigenfunctions consist of a linear combination of the functions
H .hz
ejk‘ while the eigenvalues are determined by how similar these functions are across the
aperture. In this example, if the signals are orthogonal, i.e., P(kz-k;) = (, then the eigenvalues
are equal and reflect the noise power of —;: Sno(“’) from the individual directions. If they are
very similar, 1., p(Ky—Kkj) = 1, then there is one dominant eigenvalue of L Sno(w) which

represents the situation that almost ail the noise power onginates in a direction which 1s the
average of the two scurce locations.
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We can determme the optimum beam pattern and 1ts output noise power using these
expressions and assuming that sensor noise with level N, 1s present. Since the total noise power
1s also the term that normalizes the beam pattern we determune 1t first We have after some
manipulation

kpez kpet
02(w|5-r)= /[ e —T-Q(w zle -T-didi (538)
° Q ‘Q
Mo 1 ) -
T e — Ve —— O ———————————————————— - - 2
i [ 7 B+ oGy D) (o(k k) + plkykp))
LI ((k-k)-(ls-k))z]-l
T AR -plykpD) LT AT
and
L
g(w:le.T)=(ag(wlLT))E gp(k-!s-r) (5.39)
L otk + p(k) (o) + o)
2 1+B11+plsy k)l plkky) + p(kk9)) (p(kyky) + plkrko
(k) -plicko) (k) ~pllegky)
T THA - ply )] e e
where

B=LS, @)/,

While complicated, these expressions can be interpreted. If p(ky—%,) =0, then the beam
pattern has nulls of approximately

1
1+6l(1 - p2(k; k) - P2 (kykp)

p(ki-kp)

at each k, i.e., sironger noise sources produce deeper nulls. If we have p(ky-kp)= 1, the
beam pattern and response resemble that for a single noise source.

In Figures 5-11 and 5-12, we have 1llustrated these results for an array and noise source
geometry. We can observe that for 2° and 6° separations, the noise power output resembles
that of a single source. Here p(kj-ko) == .99 and .94 respectively. At 20° and 60° separations,
the effects of the two noise sources are resolvable with each source producing a response
approximately equal to . If we examine the conventional beam pattern response in Figures 5-13
and 5-14, for comparison, we find much the same behavior for the peaks; however, the sidelobe
level is very high and could easily be attributed to other sources of a lower power.
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The patterns illustrated in Figures 5-15 through 5-18 demonstrate how the output noise
power is mnimized. For a 2° separation the beam pattern differs substantially from the conven-
tional one only when $=60 Even a minor reduction of the beam pattern in the noise directions
is worthwhile when the directional nosse level 1s mgh Note that a higher sidelobe level 1s intro-
duced to accomphsh this As the separation between the two noise sources increases, all the
beam patterns differ from the conventional beam pattern The pattern for =60 has very high
sidelobe 1n excess of the mam lobe for separations of 6° and 20° This behavior contrasts with
that for a single source In that situation the closer the separation, the higher the sidelobe In
this case, the beam pattern must mimimuze the effect of two sources, consequently, putting the
target on the skirt of a main lobe 1s not a viable alternative At wide separations the large side-
lobe disappears, and only the ficld with a very hugh noise source places a decp null 1n the noise
direction In all cases we can see the gross behavior which governs the beam pattern for a
directional noise field We try to place nulls in the direction of the noise sources while not dis-
turbing the nulls at other noise sources and mimmizing the total sidelobe level so as to reduce
the effects of the sensor noise

We can nterpret the output noise power in morz detail by mampulating Eq 5.38
This also gives some nsight into the optimum resolution of the two noise sources We can

express og(wl_lg-r) as
o2(wlkp) (5.40)

No | B (02 oy k) - 280(k ko )o(k kel k)]
L 6+1)2- 8202k k)

The second component i the brackets represents an increase due to the directional noises,
which is analogous to the term

L
sinc2 ((En -kr) - a3, -2-)L Sno(w)/No
1+L Sno(“’)/No

for the single directional noise case (see £q. 5 20). It is a quadratic function of the terms
p(ky—k) and p(ky-kT); consequently, the increase i output noise follows elliptic contours
versus these parameters These ellipes have a mz;or axis representing the geometry for maximum
interference and a minor axis where 1t is a minimum. The major axis 1s specified by

& ykr) = plkyky) (5.41a)
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Figure 5-18. Optimum beam pattern for two-directional noise sources at 8=90°;
¢,=430°; 67=90°; ¢t=0°; and = 60.0, 6.0, and 0.6.
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ard the minor axis is
ok k1) = -pkyky) (5.41b)

Since p is an even function of k, the maximum noise interference occurs when

Aed

v"m“\’w% o ey
. )

4 kykp=kyky (5.42a) ﬁ
or .
-
kykt = Koykp (5.42b) &
)
The first occurs when the noise sources are close together and the target is identical to the !

LT
N

case of a single directional noise source twice the level. In the second, the target is situated
between the two noise sources, which 1s the geometry that we illustrated earlier.
We define the sources to be resolvable if

e

2 2 81“1&2)
o @wlkp > ao(wl 5 (5.43)

In the geometry analyzed previously, this requires
1+5(1 - ) sinc? (2aLysing,) > 2sinc? (aLysing)
* [1 +p(1 -sinc(27L; sing,))} (544)
In Figure 5-19 we have plotted the § required for resolving tne two sources versus the separa-

tion angle between them for Ly =3 For example once they are closer than ¢, = 3%,afofat
least 600 is required.
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Figure 5-19. Required SNR for separating two-directional noise sources.
5.3 WAVE NUMBER ANALYSIS FOR LINEAR ARRAY
Before considering analyses for more noise fields, we examine a frequency wave number

approach to optimal beam pattern design. We have found that the quantity og(wll_c-r\ specified
the noise power at the beamformer output. From Section 4.2 (Eqs. 4.22a, 4.22b), we minimize

o0 o
2 I B . % (. ) 2
ao(wll_t-r) l l oY 19 olwk Jkp)| “Pleo:k) + Ny L IGolw:z|kp)| “dz  (5:452)
with

go(w:gﬂ_lgr) =1 (5.45b)
For lincar arrays we can obtain a particularly useful and intuitive approach using wave-number

concepts. This was apparently used first by Woodward [ 23] and later extended for analyzing
superdirective arrays by Francia [24].
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APPROXIMATE

Let us define Gg(w:%) to be a weighting across the array and

ky=k-a, (5 46)
We have for the beam pattern

L/2 ka8
glw:k) = Gg(w:R)e d2 = go(wik,) s (547
/2

where gy is the Fourier transform with respect to the spatial variable of Gg. Consequently,
only the projection of k;=k-a, is relevant in determining the beam pattern output. This is
illustrated in Figure 5-20.
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Figure 5-20. Planes of constant response for a linear array with orientation a, and length L.
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We now consider the component of the output due to sensor noise With tlus linear
geometry we can develop a spatial dual to Parseval’s theorem and represent 1t in the wave
number domain We have

coman L/2 2 o 5 dk,
N, | IG(wz)l dz=N, [Golw D" de=N, | |gglw.kyl o
(Y] L/2 oo

(548)

Applied to the optimum filter, we obtamn

0 00
dk 2 2 dk,
a2 (wkp= / : [ (;;)ﬁ [9o(w kjkp| ™ P(c:k) + Ny f Ige (w k)l Er
00 Yoo oo

(5.49)

We can determine the output noise power by an integration over the sphere or disk of radius
2x/A and an integration over k,. The most important consideratton 1s that if we tailor the
sidelobe structure to minimize the first component, we increase the second component due
to the white noise. If we have only sensor noise present, we know from Section 4 that the
optimum beam pattern is

g(wk|ky) = sine [(x-gT)-_aa -;—] (5.50)

This can be represented as indicated 1n Figure 5-21. The target has a wave number whose
magnitude is 2a/A and the beam pattern generates a main lobe of width 2 x 2z /L.
We first examine what happens when we have a directional noise of level Sn {w) and
wave number k,, as 1llustrated in Figure 5-1. We want to minimize 6o(w:kT) which is given
by

2 2 No 2
ao(wzg-r)=Sno(w)lgo(wzgn-_aa)l +-2—1r~ lgolwik)l " dk, (5.51)

We have a trade-off to make; we want to make the array response as small as possible in the
response direction of the noise source, which can be done by null placement methods, for
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3 ::‘l‘ Figure 5-21. Optimum beam pattern with only sensor noise present.

¥ this one would cancel the response in the noise direction with a beam of opposite sign. We
25 cannot do this, however, in an arbitrary manner. Since array has finite length, we cannot
realize an arbitrary g(w:k). The sampling theorem says that on the average we can specify one
sampled value per distai.ce of 2z/L independent of the other samples and still realize the

function with a fimte length array. When we specify these points as g{w.n ZT"'), we can

Y]

ol

¢,
f:f;' determine any intermediate values by the interpolation formula associated with the sampling
A theorem, i.c.,
A

™, o
2 n\ . p

% glwk|kp) = g w:nT sine {(k-kp)°a, - n—i— (5.52)
Ptin n=-00

o

with

glwkp|kp =1
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If we want to place a null in this beam pattern we must adjust the values

.4
L 2
source 1s outside the main beam region the null can be placed by adjusting the g(w n =‘:7'—)

glwn 2—) To place a null for a single noise source, two situasions can occur  When the noise

8

nearest 1t so as to cancel the main beam response Only a modest vatue of g {w n 3{'—) 15 needed,

i
X since the main beam response is quite low Consequently, the added side lobe response 1s small :::‘
‘:j If the noise source 1s mside the man beam, one must cancel a very large main beam response ::'.::
oo value. This requires a large value of the adjacent g(w n) and as a result very latge sidelobes are o
introduced. Both of these situations are illustrated in Figure 5-22. The amount of additional
’éﬁ sidelobe response 1s the value expressed mn Eq. 5.51 n terms of the effects background noise
N introduced. When noise single source 1s near the target, the response funciion appears to be
53 displaced. The amount of displacement 1s governed by the ratio of directional to white noise
xe and the proximity between the target and directional noise source This is the dominant effect
5 . with a single directional noise source
g When several directional noise sources are present, the situatton becomes more
g complicated. In adjusting the coefficients g(w:n 217"—) we must constder not only the side-
&R

I

fobe level but also the mutual interference created by placing the various nulls If the sources

are widely separated relative to the resolution of the array, the interference 1s mirimal If they
e are not, we must determine the exact trade offs using our optimum array design procedures

For wave number fields which are not directional, the imtuitive appeal of Eq. 5 51
is still useful Basically we attempt to minimize the overlap of the beam pattern and the wave
i number function for the noise field without undue effects from sensor noise As we will
n subsequently discuss, this mimmization of the overlap can often be explo.ted in a manner
unique to spatial processing. Essentially, for propagating signals, the maximum wave number
for a given w is w/c, or 2%/, and all propagating noise could be eliminated if the sidelobes

ety

Wi,

yhor,
A

11‘1

LE were confined to a region
1
BE Ik, > 21
W In principle this can be done, however, it requires extremely large sidelobes for k; outs:de

this region. Since the output Jdue to sznsor nosse still 1s affected in this region, the response
becomes extremely noisy.
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Figure 5-22. Null placement effects for optimum beam pattern design using frequency
wave number methods.
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5.4 LINEAR ARRAYS IN ISOTROPIC (OR OMNIDIRECTIONAL) NOISE

A common model for ambient noise of deep ncean noise 1s the sotropic nose ficld
distribution discussed in Section 2.2. The spectral covanance function for the model ts

S 82) = S, () sine ( = IAgl) (553)

ﬁ:% Many beam patterns are designed, and the figures of ment attached to their performance are

discussed in term- of their effectiveness in combatting this particular noise Unfortunately as

i"‘% we will sec, using this nose field alone can be misleading for it 1s closely related to super-

; z directivity and singulanty 1ssues it In this section, we briefly discuss how such noise fields
i,%} can be mncorporated in optimum array design by using results established 1n commumication
3 theory and electromagnetics. We also apply our frequency-wave-number analysis to discuss
- endfire gain in linear arrays. This same analysis extends to the nonuniform distnibutions of
)' 4 noise which we discussed in Section 2.2.

1 7 We constder the noise field to be composed of an 1sotropic and a white noise com-

ponent such that
e

b 1(w:42) = S, () sme (i::-lA_z_ |) +N, 8 (A2) (5.54)

; Sg The frequency wave number function 1n three-dimensional space for isotropic notse consists

of a sphere of impulses; however, when one integrates all those parts of the sphere which have
the same wave number projection k+a,, a rectangular function of X-a results. Aiternatively,
the one-dimensional transform of Eq. 5.54 with respect to the spatial frequency as observed

by the array, 1.€., kg, yields the distribution as shown in Figure 5-23.1

! For a linear asray, the integral equation that specifies the optimum #.rray weighting
. (sec Eq. 4.6) 15

K
N

8 L2 “

St sno(w) sinc(—c-‘!!l-llll) Gow:89l k) kg + Ny Golw:2y{ k)

; .le

& (5.55)

skyea
—fwe T oL, IgyI<L

-]
2n . jk,2
Pka(w k)= [ [Sno(w) sine (7\- Q) + No8(§l)] € a4 de,
(-]

1 Note that the lincar array allows introducing fhe sensor nowse i terms of an effective wave number X "
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Figure 5-23. Distribution of noise power versus k,, the effective wave number across
_ the array.

where ${w) is a normalizing constant for unity gain at k=k. The solution of this integral
equation can be expressed in terms of the spatial eigenvalues and eigenfunctions of the homo-
geneous integral equation associated with the temporal frequency-spatial covariance of the
isotropic noise. For this particular kernel, the prolate spheriodal wave functions specify the
basis for the solutions. When one maps the parameters of the prolate spheroidal wave functions
to the array design problem considered here, there are 2L, + 1 significant eigenvalues. As an
indication of this behavior, Figure 5-24 illustrates the six most significant cigenvalues as a
function of array length L. For 2L, > 1 the eigenfunctions resemble sinusoids where the
spatial frequency separations zs-": .

If we denote the eigenvalues as v, (w) and the eigenfunctions as ®,(co:?), the optimum
array beam pattern is, using Eqs. 4.12d and 4.15,

2
go(wik] kp) = o (wlkp -

= U2 4. L/2 .
dkea,? * k3,8
) e l4),,(«:.!11)(“21/ oplwple dSZz/('Yn(o))+No) \
B = V) L2

(5.56a)
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wherz the performance as encompassed by the output nose power is

2

dkpea,8
=, L2 'e T3 (@Dae
(5 56b)

2
kr) =
ao (wlkp) Tp(w) + N,

n=l *“L/2

When the array length Ly exceeds umity, the eigenfunctions approach a stnusoid
harmonically related at a fundamental 2z/L. Switching to a complex exponential represen-
tation for the sines and cosines we then have

2nr\ LT
) .
o sinc [(kTﬂa'T)?r & L+ LBy (@ ke )
L L P

2
kr)= |L
00(03 k)

= ‘Yn(w) + No
(5.57)
S (w)
N, n
0 L)
T (l+-5 N, ),, IKT'-EII <2m/A
N S, (W)
= = (1 s 220 ) kgl 20/ Cendfice)

Ny,

N,

_l:g' Jkr°2,] beyond region of propagating targets

This represents the approximate performance of both the conventional and the optimum
arrays. It is only in regions where the isotropic noise 1s dominant that the optimum array can
achieve somewhat superior performance by displacing the main lobe into a region with
kea, > .2.7%' , where only the white noise is present. This is an example of how a superdirective
beam is formed.

In Figure 5-25 we have illustrated the performance found by solving Eq. 5.55. We have
also indicated the results indicated by the approach discussed above for Ly > 1. The arrays show
a gradual decrease noise power output at endfire. This decrease can be interpreted as putting
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the array wave number response 1n a region where the frequenc; wave number spectrum of the
noise is lower The conventional array performs almost exactly as predicted by the large array
approximation, while the optimum array disptays an improved performance for the high
isotropic noise case. This can be attributed to superdirective effects.

The presence of high endfire gains has been observed by several people, while the dis-
cussion by Vanderkulk [25] s best known, the first observation was by Schellkenoff [26]

A report by Schulteiss {27} 1s notable because 1t has several sets of figures Its equivalent in
signal design for temporal signals apparently has not been discussed.

If we examine Figures 5-26 and 5-27, the optimum beam patterns for operating in an
isotropic noise environment, we observe that when the target is broadside the beam pattern has
a conventional shape. In the case of very high isotropic noise, the beam 15 shightly displaced into
a region of nonpropagating or sensor notse only. Again we observe that optimum processing
offers substa~tial improvement when one can place part of the beam pattern in a wave number
regon where there 15 a lower nonse level and yet satisfy the constraint of having a unity respcnse
in the target direction.

We can interpret high endfire gain for isotropic noise directly 1 terms of three-dimensional
frequency wave number concepts. This interpretation also predicts the occurrence of simlar
behavior for other types of nosse fields. In Figure 5-28 we have indicated the frequency wave
number functinn of 1sotropic noise as distributed on a sphere of radius 27/A. According to our
intwitive wave number analysis, there is a strip of width 2 X 27/L representing the main lobe of
the beam in the target direction. For broadside beams thss strip intersects a ring-shaped region
whose approximate area is ‘3’17?' Xdn X 2{, as indicated Fy target ]o:ation on Figure 5-28 At

endfire the region has a shape of a cap whose arex is 7 l_%:! J 2% , as indicated by locaticn B.

The mtersected area of the endfire region is half that of the broadside regicn. The gain can be
additionally enhanced by displacing the lobes outside the sphere and increasing 1ts gain. If the
noise does not have the uniform distribution of 1sotropic noise, the intersected regions must be
weighted appropriately. For example, if there is a high noise component noninal to the array, the
endfire performance will be enhanced. Such would be the case for a vertical array in a noise field
such as that shown 1n Figure 2-8. Conversely, the high layer noise of Figure -4 would reduce
endfire effects of the array performance. Some typical results for noise fields with nonuniform
distnibutions are indicated in Figures 5-29 through 5-32.
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5.5 SUPERDIRECTIVE LINEAR ARRAYS

Superdirective arrays have a long and rather interesting history The work on them has
been motivated by the apparent ability to achieve very small beamwidths with finite length
apertures. One of the first to recognize their existence and properties was Schelkunoff [26]
in his algebraic theory of linear arrays They have also been extensively discussed 1n electro-
magnetics, where the problems inherent in their realization have been investigated Several
synthesis procedures are related to superdirective arrays, in particular those of Pritchard [28]
and some aspects of Dolph-Tchebychev arrays They are also intimately related to singular detec-
tion theory which 1n itself has seen a long period of development [3] Quantitative results are
hard to come by, however, the general prmciples about superdirectivity and its relation to singular
detection can be understood quite intumtively

For purposes of illustration we use a linear array, although there exist examples where
other types of arrays, e g., circular, where similar approaches have been used If we have an array
of length L onented with an array tangent 2y, 1ts frequency wave number response, in principle,
extends to all spatial frequencies If one constders the response to plane wave signals in a medium
with finite propagation velocity, then the incident wave numbers, or spatial frequencies, are

lim'ted in magmtude to k| < =8 2-{" The response outstde this range 15 theoretically arbitrary.
For a superdirective array, the ‘ivave-numbcr response i this region 1s mampulated such that
within the range (k| <%\I 1t has a very narrow beamwidth

We have pointed out the difficulty with this in a practical system, the narrow beamwidths
are created by generating extremely large sidelobes in the region [k| > 2-{" . If one investigates the

beam pattern, or wave number response, by plotting it versus ¢, these sidelobes never appear.
Sensor noise, however, does not have a propagating structure but has an equivalent wideband
wave number spectrum which can extend well beyond the limit on propagating imit of (k| < 27/A
Consequently, 1t enters through in these large sidelobes as we can see from the second term in
Eq 5.51.

We can indicate some superdirective effects for a half wave length array by designing a beam
which has half the width of a conventional pattern We use the procedure of Section 5.2 and let
Ny 0, or § oo This yields

L
g(wklkp)=C snnC[(ls-lsT)'aa 5]

2 7y L T L
- SINC k-&r-ga—i Qa? + sinc lﬁ'—'ﬂ‘*'i‘af 'z_la-z— »

(5 58a)
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8 \-1
where C= ( - —) =533 (5 58b)
2
2 Ny
and ao (wll_(T)»c T =0 (5 58¢)

The beam pattern 1s indicated 1n Figure 5-33. The bea = pattern 1s indeed narrower, but large
sidelobes are created. These are outside the region of propagating noise, so that they would not
be observed in a normal plot of response versus angle When 1t 1s plotted versus the wave number,
however, they are very evident.
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c (’Int [(k‘kr)’!a%] %ém‘ [‘hh)a‘—: ‘%]
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Figure 5-33. Example of a superdmective half wavelength array

If we compare the output noise level of the superdirective array to that of a conventional
array, we find that the ratio of the ratio is

1+16/a%

> 13.6
- 8/1r2
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The superdirective array is much more scnsitive to sensor noise

The optimum design of superdirective arrays 1s not, surprisingly, closely related to the
optimum processing methods that we have been considering Also, this llustrates the connection
between superdirectivity and problems :n singular detection theory An ideal array would have
a unity response.!

M-

)

-

Ay by Ay

Blky= 1) Jkg| <27
go(wky) = (559)
glwkys [k >2a/

Bry 5,
SO A A N\n- o

o

For an array of length L we want the transform of this response to have the form

fimte , RI<L/2

Gylw 9= (5.60)
0, 121> L/2 )
We have 'l“
Ak 2 kg2 dk, 3
Gy(w:®) =¢ a 4 go(w.ky) e — (56l1) E {
Ikal >2n/A 27
b
or
-jk 4 { v
Gp(w:)=¢ Ta +Gy(w:R) * [8(2) - % sine (%{-)]
This yields

RN, | T

L2
A 2 AL
5/ de, simc [—)\- ® -92)] Golw 2y =e 2,
'Li2

LA

L2<g <L2 (5.62)

This is the integral equation which we would obtain if we posed the optimum detection prob-
lem of detecting a plane wave signal in the presence of 1sotropic noise alone, with no white nose

S

present Such an integral equation 1s a Fredholm equation of the first kind, and the general
solution has singulanty functions appearing at the end points of the observation interval for

XA R

AR
o

1 4s noted eartier this value of unity near the target direction must yield a nonzero finite measure when integrated in a
region “near” it

t
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temporal processes or at the aperture extrenuties for spatial processes One can specify a forma!
solution in terms of the solutions of the homogeneous equation—the prolate sphoidial wave
functions; however the resulting series does not converge, in general, to well-defined functions

The essential points to be made regarding superdirective arrays are

1. They are pnmanly a mathematical 1ssue since the effects of inter-element coupling
and the sensitive adjustments required cannot be controlled precisely enough to implement
them practically

2. Their sensitivity 1s closely coupled to singular detection and 1s of interest as a
fimiting situation when the white nosse 1n a system becomes small

3. They are only effective across narrow frequency bands since the aperture phasing is
coupled to the wavelength specification.

4 Their response should be determined for all wave numbers, not simply as a function
of the incident bearing angle

6. OPTIMUM ARRAY PROCESSING FOR DIRECTIONAL NOISE FIELDS

Noise fields that consist of a fimte number of directional sources plus a winte component
can be analy.cd exactly. The final results require knowledge of sincn(k), the conventional wave
number response of the array, the correlation, if any, among the noise sources, and a matnx
inversion Since we have observed in Section 3.6 that directional nosse field has a fimte number
of nonzero eigenvalues, we should be able to specify the solution in terms of a set on
linear equations

The notse field has the temporal frequency spatial covariance function

N X ik - §
Sn(“’:EQ = Z Ze Sﬂ(w) e + N0 89 (E'Q’ 6.1)
=l =1

where Sij(“’) represents the correlation among the various directional components Note that if
we require the directional nosse to form a homogeneous field, then homogeneity requires that
plane waves with different wave numbers be uncorrelated. For convenience 1n the subsequent
discussion, we define [S(cw)] to be the matrix whose elements are Slj(‘*’)- In addition, we define

the propagation vector e"!Sn z to be
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where the k; are the wave numbers for the various noise components. Consequently, we can
express Eq. 6.2 as

'ﬁ-‘n'lf gkt
Sy(wizd)=¢ [S(w)] e +Ny 0 D) 6.3)

To determine the wave number response and the output power, we must find the inverse

kernel across the aperture £2. We appeal to a functional analog of the following matrix
inverions lemma

whrart=at-aluTp+vaturlyal,

where A1is N X N, and u and y are M X N. We identify A as No 89 (_z_-;_'_), while u and ¥ are

ik -z .
replaced by, respectively, ¢ ¥n2 and [S(w)]e Jk“ 5 The spaces of concern are £ X & and
§2 X Ry We have for the inverse kernel

Quwzd)= = o@D
NO

ik -zl
Jkq°z -1 .
- £ [1N+ Ag @I ]] [S(w)] e'-'l-(n (o
" N 64
where we define
-l sincgy(k)k9) sincqy(kk3) 1
lpgl= [sincotkokp) 1 co (6.5)
sinc(ksk;)
) ’ P

UL S L PR i




(The term [pq] 15 identical to the term [sincg (8] used n Eq 3 $7¢ ) This matnix reflects the
mutual interference of the various noise sources as observed across the aperture
The output noise power as a function of the target duection follows from Eq.417 as

Ag ATy S 1g -1
g (w|1.(T)- ____Nn_ IN+AQ[ ()] [pQ] L ( )] g(k )
Ny, o
(6 6a)
where

sincglk-ky)
ANK) = {sincgk-ky) (6 6b)

SinCn(K-]_(NZ’

This can be simphfied considerably; the final expression 1s

2 No [ .f -1]-1
o@D = o 1 T8 ok #7p) i+ 81 Lo )]s 670

where

AqiS(w))
= (6 7b)
N,
Thus 1s the same form we had for the single noise source case. The limiting performance, or

lowest noise level, is given by NOIAQ, while any increase n the naoise output level enters in the
form of

N /A .
c (wlkT) Ta (6 8a)
where
a=Tr (lﬁ’l NG ey (k) Uy + (6] lpﬂl)") , (6.80)
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For a conventional wave vector response, we obtain

e

X4

i.
3

N,
w|kp)=— 1+7Tr [18] pty) pT(kp) (6.9)
T Ag

We can observe that the mutual interference is introduced via the term [pg] 1n the optimum
beam pattern output, whereas 1t 1s not included 1n the conventional processing
The optimum beam pattern follows directly from Eq. 6.4 using Eq 4 16 Ths yields

sncq(e-kp) - Tr {B1anGep) 850 (1 + 181 1oy}
1- Tr{ (81 onCp) LKD) iy + 18] [pnr‘}

g(wk|kp) = (6 10)

We have a conventional beam pattern and a term which introduces nulls in the direction of
the various noise components.

We can completely analyze the optimum array performance for a source of arbitrary
geometry operating 1n a directional noise field. Since we have introduced most of the intuitive
concepts in our discusston of linear arrays, particularly null placement, we need not pursue
this further. The major remaining issue is the effect of various array geometries

7. ARRAY GEOMETRIES IN HIGHER DIMENSIONS

The analysis of arrays with geometries that are more complex than linear generally
becomes quite complicated. Since our primary consideration is the development of the major
concepts that are involved in optimal array processing techniques, we have focused our attention
upon linear arrays. The more tedious mathematical issues did not appear, yet we were able to
analyze substantive examples iflustrating the 1ssues under consideration. In many respects, this
1s deceptively simple, in that added dimensions introduce umque problems and possibilities
which have no direct temporal equivalent. This does not imply, however, that the introduction
of more complex geometries changes the essential concepts we have developed Higher
dimensional problems are sufficiently complicated such that any insights that can be drawn
from simpler problems are valuable

In a discussion of optimum processing with more general array geometries, we cannot
pursue as extensive an analysis as we did with linear arrays. There are stmply too many
combinations of array geometries and noise fields which rapidly reach a pomnt of dimimishing
return once a few representative examples have been introduced We discuss some of the more
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common geometries and then concentrate upon some representative examples of optimal
processing and the limitations imposed upon it by various noise fields

To keep 1ssues 1n perspective we point out that the only noise fields which can
reasonably be analyzed are directional ones, and even these become quite complex for any
more than two sources Exact analysis of fields with noise sources distributed in spatial wave
number 1s impossible even for such a simple structure as sotropic noise  The more complex
geometries do not change these results. We have already done a complete analysis for the
directional noise field and the only new issue 1s computing the sincgy(k) function The exact
analysis for distributed noise sources remains intractable, and we must still resort to approxi-
mate and/or asymptotic analysis

In the analysis of linear arrays we found that the important wave number was k+a,—the

component of the wave number as projected upon the array tangent We are sunilarly concerned

here with projections on a set of lines for crossed arrays, . a ~!= -2 for planar arrays. Just as for

hnear arrays, these projected wave numbers can be quit . calculating wave number
responses
,z, When dealing with white noise and frequency wave number 1ssues one must be careful As
5;“ before, we regard this class of noise as nonpropagating in ongin and independent from point to
point on the array This leads to a wave number representation which s flat where the array 1s
e capable of filtening and no definition for the entire wave number space 1s implied 1f the completely
G flat response for all wave number space 1s assumed, we are led to infimite noise power propagating

through our spatial filters. Thus 1s not a very satisfactory model of a real array Essentially, we want
the Parseval relation

o

%

45 No |- | lgtw k12 dﬁ-? =N, ] Glw 2% dz
2 (2m) o 0

In general this 1s not true, and only for those special cases in which we confine our integration to
projected wave number components can we wnte relations of this form.
There are three situations of general interest in arrays with spatial extent of more than one

B3

direction « the target and any directional noise sources are near broadside, the target 1s broadside

Py

and significant components of the noise field propagate across the array, both the target and noise
propagate across the array. Each introduces 1ts particular set of considerations. Several typical

s\

cases are 1llustrated in Figure 7-1.
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Figure 7-1. Typical array, target and noise geometries.

7.1 PLANAR ARRAYS

Planar arrays are the simplest two-dimenstonal array structures Qur analysis of planar
arrays is essentially the same as for linear arrays Figure 7-2 illustrates the array geometry under
consideration, for convenience, we orient the array with a unit normal vector ay and tangent
vectors a; and a5 (these are not necessarily orthogonal).

We can specify the array weighting pattern as a two-dimensional function

el
2

L
Glw:2) = G(w-Lyay, Lap), 17y < Tl gy < a.n

We can attach all the common weightings or shadings as we did with the linear array
for each coordinate £ and £, or we can specify more complex shadings with a function
which need not factor. We consider some examples. For a target at kp-a| = kyray = 0 with
conventional shading, G(w £9,85) = t/L|Ly, or

—
=
§
3
!
]

%
2
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3] . L/2 L,/2 (a0, kean?
2 ) (ka9 +k-a
;z« g(w ) = sincg(k) = m € 171 252 deyde,

% = sinc k'gl 7 sinc! k-gz ? (7.2)

RIS

T ’
FEEEE

oy

Figure 7-2. Ly x L, planar array with orientation a; x a5 0@y,

As we have seen, sincﬂ(y 1s important i our discussion of directional notse analyses and
its form 15 sketched in Figure 7-3. Figure 74 is the beam pattern when the array response is
presented in dimensionless units. If we examine the array pattern in Figure 7-3, we see that 1t has
a resolution of 2'(21r/Ll) inthea 1 coordinate direction and 2-(21r/L2) m the a9 directior The
resolution cell has an area (21r/Ll) X (21r/L2) m wave number space. The distribution of this area
is determined by the orientation vectors aq and 1)

A triangular shading in each direction produces a beam pattern of the form

Ly .2 Ly
g(w k) =sinc“{k-a; 1, sinc“ { kay vy (7.3)

We can also split the array such that
gl = {F (AR e - Fy Heranr-a )
*{F2 16221 - Fylr a2}, a0

where F) and F; are the beam patterns on the array halves
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Figure 7-4. Beam pattern planar array sinc (2 vy) sinc (27 v,).
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This beam pattern typically has a saddle point structure near the ongin m wave number

space where the cross defining the cntical pomt locus of the saddle 1s along the vectors 3 and ;,'::
a- We see that in this situation the generation of single beam s not a desirable processing method -}’

{ We need to generate two beam outputs, one for each coordinate direction 1n order to obtan our [
: ' desired response for nulling at a particular point ::

“ o The analysts for optimal processing in the presence of directional noise 1s substantially the 3
same as for a linear array. The performance may be taken directly from Eq 6.8 as f'

’f -
. N 1+ (L Ly/Ny) Sn (w) ?

0 ~

4 el = s 9 :
\3:5» 1+(LiLy/No) 8y, () (]-‘.mcﬂ(k-r-_n)) ‘

e,,;

j

£

The beam pattern also follows directly from Eq. 6.10

sincq(k-kp) -smeq(krky) sincq(k-ky)
g(w kfkp) = 5 (1.6)
1 -sinc Q (]iT'l_(n)

P
g
3
2

In Figures 7-5 through 7-10 we indicate the performance for some typical noise
geometnes We observe the same effects that entered 1n our study of linear arrays Note the high
sidelobe levels in the conventional versus the optimum processing The results when two direc-
tional sources are 1n the noise field are parallel to those for linear arrays.

For analyzing isotropic noise we encounter the same type of difficulties as in the Iinear
case 1f we pursue an ~xact analysis. We can, however, pursue as approximate analysis. First, we
need to find the asymptotic distnbution of the eigenvalues for the 1sotropic noise kernel expanded
over the aperture. The eigenfunctions will be spatial stnusoids. Asymptotically, the eigenvalues
approach a skewed verston of the two-dimensional wave number transform as the array extent
increases. (We assume that the array 1s located 1n the (z, zy) plane ) We have from our previous

results
! jkoz
P(w:k) = [ Sy (w) sinc [—— |z, I} Za dz,dz,

T A W,

o
2

T e IR PRPER R \

-2 ___ 2%
S () 3 ol <3
(31) L (xuggl)
_ A 27 o
0 Ik, > iy
.7
Z,=z4ay 22y ky = kya, + kyay
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Computing the noise output as we go from broadside to endfire 1s more difficult for there 1s not

a monotonic increase as is the case in the hinear arrays If Ll)\ >1and L2)\> 1 the eigenfunctions
will approach spatal sinusotds with an eigenfunction distribution given by the above two dimen-
sional wave number function An approximation performance 1s

2 1
= — +P(w k 7
o  (w]kp) L (Ny + Pw k) (78)
N |, 2 Sn, () l_(“‘Ta”‘) ) =172 o
LL, N, 2n ol <X
N
o 27
s > =
LL, kil > 3

This diverges as kT approaches endfire or 2a/A, so 1t 15 hard to predict the endfire performance
It 15 easy to observe that our approximation can be refined with two considerations If we nte-
grate over the finite beamwidth, we average over the integrable singu arity in the wave number
function In addition, at endfire half of the beam response 1s in the white noise region which has a
lower noise level Consequently, we have that the output noise increases until we are beyond

at which point 1t levels off and then begins to decrease The optimum processing can increase
these effects somewhat by appropriate showing of the beam Some representative performances
are 1llustrated n Figures 7-11 and 7-12.

One can introduce various noise field geometries representing surface, bottom or layer
noise. The results of our discussion on noise representation indicate how the two dimensional
wave number function can be found, from which the approximate performance can be
determined Alternatively, we can pursue an anal, sis 1n three dimensional wave number
space with the noise field distnibuted on a sphere as we did 1n our discussion for linear arrays.
We are led to the same results in exither method.
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7.2 CROSSED ARRAYS

The importance of crossed arrays lies in their capabilities of providing spatial information,
or resolution, along two coordinates with fewer sensors than a planar array Whule in a planar array
the number of sensors increases as L L, of the crossed array sensors increases as L+ Ly Inmost,
but not all, cases crossed arrays perform virtually as well as their planar counterparts when their
outputs are processed correctly. This 1s very significant in reducing computational demands

One of the most important facets of the analysis of crossed arrays is their tutorial value
With a mmmimum of complexity, they introduce several sigmficant concepts in the processing of
array data. In particular, the importance of frequency wave number concepts as a means of
obtaimng approximate expressions for the system performance For our analysis we consider two
nosse fields — directional and 1sotropic.

We consider an array structure as illustrated in Figure 7-13. The class of beam patterns
which we can generate is given by

Loy/2
h kea?y 2l K agty
glwk)= G(w:Ry)e ag; + Gyw:fp)e a2,
Ly/2 -Ly/2

= gylw.k*a))+ gylwkeay) (1.9)

Figure 7-13. Crossed array —legs of length L},L,, oniented in direction ay,a,, crossed at
center of legs.
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This 1s a much more restrictive form than that which we had for the planar array We can-
not generate resolution cells, 1¢ , regions where there 1s a main beam concentration and
outside of which the beam 1s approximately zero With a crossed array we can generate only
combinations of resolution strips In Figures 7-14 and 7-15 we have plotted the conventional
beam pattern for a typical crossed array configuration This beam pattern 1s given by

L Ly Ly Ly
kikr)=  — k)ea, — |+ —— ker)edn ——
glw _I_T) L*L, sinc |(k-kp)*a; 2 + L, sme J(k-kT)°a) >

(710)

Conventional beamforming can introduce ambiguity effects if a notse source appeared in one of
the “sidelobe strips,” one should weigh the use of the other hine of the cross to a degree greater
than that of the conventional weighting of L,/L]+L2 Optimal processing achieves a substantial
amount of 1ts improved performance and sidelobe suppression by introducing this implictly
rather than by using esoteric beam patterns

We consider the analysis of a directional noise source of level Sno(m). From our

previous example, we can specify the performance and optimal beam pattern by nspection
For the performance we have

-1
Aﬂsno(w) 2
1+ ——— [1- smcsz (l,gn-l_or)

-1

2 AQ Ny

0 (wlky)={— 711
o (@lkD) (NO) AQS, (@) 71

14 @—
No
where
Ag=Lli+L

L L\ L, Ly
sincg(k) = i, sinclk-a, > + —IE sinc{k-ay 5

This is plotted 1n Figures 7-16 through 7-18 At first inspection, 1t may appear that the above
does not perform as well as a simple linear array when the noise appears in one of the sidelobe
strips However, a comparison of this situation with the corresponding hinear array yields
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-1
i Llsno(“’) (l 2 Q' oy Ll))
ey 1+ - sinc” (51,03
:‘;ﬁ ‘; , L] NO 1 2 .-“:
%, (wlkr) = N, Llsno("") %
1+ in
N,
(7.12b)
: for the linear array It is straightforward to demonstrate that the increase in nose output for
%} No - 0 1s given by

SONN

ek

s

2
L
. 1
1- (L1 sinc [(lﬁ'r,'}-‘n)"-‘l _2] + L2) /(L1+L2)2

2 L
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The largest increase occurs when the noise appears in a null of the crossed array length with,
ie., 1t 1s the main beam of one length and the null of the other,

L

2
[ Lz] A S, (w) 1+2L [ Ag S, (w)]
() 1 o
1+— {1+ 1+
No

L
1422
L

= (7.14 =

. Ly ) wl
+ —

1 o
v
v \A
for Ny = 0. b
It is useful to demonstrate how the array obtams its increased performance. The optimum ‘;ﬁ

beam pattern 1s computed straightforward, and the next result 1s .r:,’
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We consider a situation (kn"kT)'i‘Z =0 and (kn-kT)°al —2—1 > m The resulting beam pattern «‘
generated 1s illustrated m Figure 7-19 It simply has a null in the crossed array beam pattern :_‘

In the special case of a dominant directional noise source and L] =L, we have

R AN I ANANS | 1Y

(L1tLyp) Sno(w)
_— >>1
No
. o1
sincgy (l_(;I—lgn) 5 %
%
and ,
¥4
(44
B 1
Go(w.l_<|]gr) -3- (smcn(lgkrr)- 5 smcﬂ(lgl_(n) (7.16)

Ths places a null at k=k,, while maintaining unity response 1n the target direction A natural
question which arises 1s why doesn’t the array simply ignore that section along which there
1s 110 resolvability, 1.e , assign a weighting of zero along that cross If this were done, we
would have an array output noise of qpproxnmately NO/L while if the optimum response 1s
used, the output noise is 2 dB less, or 4/3 N,/2L . Both weightings suppress the hughly
directional source by nulling 1t, however, 1n the optimum array a smaller amount of white
noise enters through 1ts reduced sidelobe level Only if the noise field has a strip of sources with
(lgr—l_cn)-g2 == 0 does the beam pattern approach that of a linear array A representative beam
pattern for a noise field approximating ths class 1s illustrated in Figure 7-20 Note that theie 1s
effectively no resolution along ky direction

For crossed arrays in directional noise fields the optimum patterns place nulls at the
wave numbers of the directional noise sources, while sumultaneously mimmizing the mean
square amplitude of sidelobes While the conventional array 1s designed independent of the noise
field, the optimum patterns indirate an intuitively appealing design to exploit the structure of
the noise fields encountered These optimum patterns are not too complicated and 1t 1s only
when the noise and targets are close together that they become complicated, introducing the
features we encountered earlier in the discussion of linear arrays
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The design of crossed arrays for 1sotropic noise cannot be pursued analytically without
considerable amount of mathematical detail The crossed geometry still reduces to the prolate
spheroidal wave functions that we encountered mn linear arrays We can, however, pursue an
approximate analysis which encompasses the basic attributes of the processing

To analyze the performance of crossed arrays in noise fields which have a smoothly
varying wave number function for[k| > 2m/A, we must 1solate a set of temporal random processes
which characterize the array outputs We can do this quite easily using wave number » . #« epts
Each leg of the array forms a set of orthogonal beam outputs Xp(w) and Yn(w) at intervals ot
21r/LI tn wave number space, as illustrated in Figure 7-21 For convemence, we subsequently
assume the array crosses are perpendicular The spectra of each of the outputs Xm(w) and Yn(w)
1S given approximately by

2 dky o

Sxm(w) ~ — Pn(w m -I-—] a+ k2§2)—27 + : (7.17a)
1 27 dk; N,
S =— kja; +— —+ —

with
[Im]] < Ll/)‘ = Ll/)\

(Inl] < Ly/A = Ly/\

ap'ay =0
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where Pn(w'g) 1s the two-dimenstonal wavenumber function Consequently, we have that
there are 2(Ll)\ + L27\) random processes The random processes xml(t) and xm2(t) are un-

correlated since the beams are crthogonal; however, xn(t) and ym(t) are correlated since
the beams overlap at the crossing point We have for their cross spectral density

1 2 27
S = —— Plw:m—a; +n=— 7
xnym(w) LILZ (‘, L, g*n Ly 12) (718)
so that as the array length L and L, increase, the effect of the correlation decreases

Figure 7-21 Wave number filters for crossed array performance
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forms a beam which has a combnation of these random processes in 1ts output The class
of beams which are formed 1s, approximately, given by

L L
oLy smnc j(k-kt)a; ) +BL, sinc [@'ET)'EZ -—

k|kp =
9w kjkp oLy +BL,

(719)

where « and f are adjusted to weight each array so as to minimize total noise output of the
beam We have

2
k-
o (wfkp)
ol 2 BL 2 2L LyaB
o + |[— ———
iy e Ny 't Gy Smya?
(7.20)
Optimizing « and g yields
oLy an(w) i Sxmyn(w)
= (7.21a)
aLy+fL, Sxm(w) + Syn(w) - 2Sxmyn(w)
BL, sxn () s"myn(w)
= (7 21b)
oaLHply Sy (@)+Sy (@)-28, (@)
This yields a performance of
Sy (WS, (w)-8,2, (w)
2 X Y XmY,
o (wkp) = - __=o a (1.22)

Sxm(“’) + Syn(w) - 2anym(w)

where the various spectra are computed via Eq. 7.17 and 7 18
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As an example, we consider the special case of three-dimensional 1sotropic noise of

Example 2.2a with a crossed array. We have

!

A
5 sno(w)+No) Ly,
Sx (W)=

No/L] )

by
Syj(w) =
Ng/Ly »

o]

Ll—
e
1l N

>

L]

bl < 7_

1.5

Ly]
(5]

= 2 2
Sxxyj(w) 4 A S"o(w%nLle 1(—9)
1

0,

2 2
N .
2R <«
Ly Ly

(7 23a)
(7 23b)
1/2
) (L}:)Z / )
L2
(7.23¢)

otherwise

Substituting this into Equation 7 22 we obtain for the special case of L|=L with $>> 1

2 N, 1+ %
ao(w k) L ® ( _ /7\))

where
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The improvement over a simple linear array is
1 Ao
-1+ —
2 ﬂ(L]/X)

We have assumed that Li/)\ > 1, otherwise, we would have need to consider superdirective
effects immediately. In approximating the smoothness of P(co k) we must have

A

L

T
< —
Po<7
or
Po

—— < ]
(wL/4N)

If ths is not satisfied, then the improvement becomes 1/2. Finally if

2 2
aY, (Y ..
L Ly 2

then we should be careful of superdirective effects. In summary, Figure 7-22 represents an example
2 2
of a superdwective beam pattern when l_<T = : ,0,0 , while plots for oo(wll_or) may be found 1n

Figure 7-23. Observe that in Figure 7-23 at ¢ =0° 1t is easier to place beam patter volume outside

IkI> 2x/A than st 1s at ¢ = 45°, therefore the endfire affects are more significant

We can also use the above analysis to derive approximate expressions for the spatial
eigenvalues and eigenfiinctions of the crossed array when operating 1n a noise field whose
frequency wave number function varies slowly over the resolution width maximum ( L/)\)‘l

of the array. The results are indicative of what is obtained in the analysis of higher dimensional

geoinetnies. We emphasize that our analysis is approximate. It combines a classical temporal

analysis with the features of the crossed array. To determine the eigenvalues and eigenfunctions

we observe that at the frequency w the random variables x;(w) and yj(w) lead to a spectral
covanance matrix of the form

)
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N
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I Sy (@) 0
| .
x .
leyl(w) | . .
i | 0 SyM(w)d

where N=L;/A, M = Ly/A and the elements Sxi(“’) are computed as mndicated 1n our previous

discussion The generation of a set of random variables which have a diagonal covaniance matnx
is a classical orthogonalization problem in matrix algebra [3]. One needs to solve for the eigen-
values and eigenvectors of the homogeneous equation

R
:
;
I
g:;
po
:

[(s(- () 1] @) =0 (7.26)

X . k=2(N+M+1)
The eigenvalues of the process at frequency w are given by the set A(w) =1
The spatial eigenfunctions can be expressed 1n terms of the elements of the eigenvectors. If
we separate them such that the first 2N + 1 components are associated with the x or L leg,

while the remaiming 2M + 1 are with the y or L leg, we have

B X
Cy, -N(@)
X
Ci, N(w)
Hlw)= (727a)
Ck, M)
. Ch, M)
's""!
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and the eigenfunction ¢y (w z) associated with )\k(w) 15

N
(a Z & (w)el(Zfr/Ll)QE] A {Z=le IQI<L1/2}
~ k, 1

$lw.) = (7 27b)

M
"‘Z & o d0DErz 2=ty |21<L,_/2}

where o 1s a normalization constant Note that the basic approach 1s to 1solate a set of
random varables from which we could reconstruct the observed signal and then to apply an
orthogonalization procedure.

We have assumed that our array 1s crossed at the center of each leg This simplified
many of our results since there was no relative phasing between the center of each feg We
now briefly consider the situation 1n which the center 1s separated. We assume a geometry as
illustrated 1n Figure 7-24. The class of beam patterns which can be generated 1s given by

kR i.9:3)]
g(w:k) = gi(w:kea) e + gy(wk-ay)e (7 28a)
where
L
1/2 Jklgl
gi(wik)) = Gwg)e ~ay (7 28b)
+1/2
L
2”42 Jka%y
gz(wll_(.z) = Gz(w Ql) € sz (7.28¢)
Lo

with, respectively, G(w 21) and G(w 25) as the weighting patterns for the first and second
array legs.
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In our analysis we are concerned with the interference relationship between the two
legs. We have

2 2 2
lgw Bl = = lg(wkapl ™ + |gxw k-ay)|

Jk-(Ry-Ry) *
+2Re [e gi(w k-a)) g9 (w k-ag) (7.29)

For example, a conventional beam pattern with only a constant magnitude weighting and a
phasing directed to k=0, 1 e , k7=0, has a power response of

L L
2 1 2
lg(w:k)| = o%sinc? (lggl 5 + [32sinc2 lk-ay 7)

L L,
+ 208 cos (k*(R|-Rp)) sinc (&'g 1 -71) sinc (_lg'gz 7) (7 30)
We see that the term

cos{k"(R1-Ry)]

POSITION OF CENTERS. R, R,
TANGENT VECTORS: 2,,
LENGTHS: Ly, L,

2

Figure 7-24 Geometry for two linear arrays with arbitrary centering
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can alternatively cause the responses to interfer either constructively or destructively The crossed
array with separated centers produces a larger array which leads to the narrower beam pattern ridges

Since the array 1s not filled, 1 e , continuously connected, large stdelobes result giving the indicated o]
interference pattern Tlus 1s a general result when one 1s dealing wath sparse arrays A typical )
sttuatton 1s sketched in Figure 7-25 We can observe the general effects for the two types of noise g:s‘:
fields that we have considered For directional noises the relevant term 1s the wave number differ- ;-/\‘\.
ence between the target and the nowse kp -k, If this difference vector falls within one of the f_:::u
strips but not near the origin, we have essentially the same problem as discussed carlier The noise \".
and target cannot be distingwished along that particular strip, 1 e , it 1s within a sidelobe strip so : N
that the strip of the second resolves the two Our analysis would be substantially the same as before «-‘;:
If, however, the difference vector 1s near the origin, we may be able to use the array separation to l::fg

our advantage to achieve an enhanced resolution compared to that of the centered arrays, if the :':.‘,-
difference vector falis at a minimum of the interference pattern the separation can be significant X
This effect 1s clearly most pronounced when the noise difference vector 1s parallel to the array ; .‘
center separation vector One still has all the difficulties of ambiguous effects as we shall discuss 5

for clustered arrays This effec. can not be used, hovsever, if the two vectors are orthogonal, as u. .i'
mdicated m Figure 7-20

The results for noise spectra with smooth frequency wave number functions are straight-
forward if there 1s no separation we have a power spectrum response E

2 2 .
lgg(w kapl ~ + lga(@ krapl® +2Re [g1(w ka)ghw keay)] X%
while if there 1s a separation we have i.*‘{;

2 2 Jk+(Ry-Rp) *
lgpw.k-apl” +lgy(w k-ag)l ™ + 2Rele g1(wk*a))gy (w k-ay)

k(R -Ry) RN
If the space factor e~ 4" reduces the overlap volume of the last term on the right, .u:

then there 1s a smaller amount of noise propagating through the array. This 1s generally the
case Physically, with the greater sepaiation, the notse field decorrelates Some typical

optimum beam pattern responses for separated center arrays are shown in Figures 7-27 and ”
7-28 These should be compared to the onginal centered array results (See Figures 7-16 ;Z'-r
and 7-17.) N
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Figure 7-25. Conventional beam pattern for a crossed array with separated centers.
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7.3 CIRCULAR ARRAYS

The analysss of circular arrays 1s stmilar in prinaiple to that of hnear arrays, however,.
the transcendental functions appropnate for their analysis are not familiar to many Conse-
quently, the salient features of circular array properties are often clouded due to the appearance
of these functions Before discussing how the response patterns can be controlled to ccibat
various noise fields, we cxamine the class of beam patterns that can be generated by typi.al
circular array structures

Ring Arrays

A ning array 1s the simplest circular geometry, as indicated 1n Figure 7-29  For this array

we have
T Jk*Ray(®)
g(w k)= Glw e Rd¢
0
4 JkeR cos(-dy)
= Glwd)e Rd¢, (7 31a)
0

where

k= a2+ Eay) (7.31b)
¢y = tan’! (k-a;, k-ap) (7.31c)

We expand G(w ¢), the aperture weighting, in order to identify the structure of the beam
pattern

= ng
G(w ¢) = Z G(w)e (7322)
n=-o0

where

o )
Gplw) = o gplw.9)e d¢ (732b)
0

Substituting this mto Eq 7 31a for glw h) yields
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ety

L)

= 2T j(k R cos(¢-dy) + ng) :{}

glw.h= Z GywR| ¢ d¢ N

n=co 0 s

el

9

= ngy - % T (kR sing’ +ng') ?’:

=R Z Gn(w) [ e do’ ::

=00 0 P

s

i = Jn(¢k - -2-) kg

& = 27R Gplw)e Ip(kR) (733) R

3 n=-00 3
3 N

We see, for example, that for a uniform weighting of (2‘rrR)"1 we have

i
AL

p2 U

0 = WY

) 5w = ok R), %

P
W
i

&
hyb g
ki

Tk

¢

L
which for a ring array plays a role simular to the sinc (ka —2-) for linear arrays The functions

3 ? ?%' "'%"“

¥

Jo(x) and sinc(x) are sketched in Figure 7-30. We point out that Jo(x) has 1ts first zero at
2 4 and a first sidelobe level of -.402 occurning at 3.8, as compared to %, and -.212 at 4 7
for sinc(x)

5
2

7

%.

L

The effects of the higher order terms can be quite complex since they must be added
in phase The weighting for each is Jn(krR), and the first five members of the series are
indxcated in Figure 7-31. To ilustrate the effects of the various terms we consider the n and
-n terms in ihe senes. We have

st |

v"‘—-wq~g -

e
L

eJ’n(¢k—1r/2)

5 R + G o) MOy

2uR(Gn(w) -n(k,R)) -

TP

Selv i

S/ 2)] (734)

20R I, (k,R) * 2Re[Gn(w)

This produces a sinusoidal pattern versus ¢y.. The total »eam pattern consists of a complex
) linear combination of these terms The weightings have an amplitude dependence upon ¥ R
determined by the term

Tk R)

Consequently, the important terms withir: the regron of propagating signals are determined
by the magnitude of Jn(21rR/h), which decreases for increasing n, the order of the Bessei
function.
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Figure 7-29. Ring array of radwus R, normal onentation dp-
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0

Figure 7-30 Comparison of Jo(x) and sinc(x)
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One can intwitively see how superdirective effects can be produced at a specific ki,
by choosing the coefficients needed to produce an impulsive function versus ¢y> 1€, one can
ignore the dependence upon the wave number magmtude. We have

P mr '.in¢kT
2RIy, Re g w)=¢ (7 35a)
so that
N -
(oK)~ — Z Iulk R IS {735b)
INHL g \ 1 (ke RO

which for k, =k, approximates ¢n impulse at ¢y, As the value of k 1s changed the exact
phasing necessary for the construction of the impuise altered which leads to extremely large
sidelobe levels. If the white noise level 1s finite or there are signals propagating with a differ-
ent wave number magnitude, this can introduce a serious degradation ir performance. An
llustration of these effects 1s given in Figure 7-32  We observe, consequently, that for any
particular k., we can achieve a superdwrective beam pattern, however, we encounter a sensitiv-
ity problem in doing so In any fimte element array, we cannot achieve the impulsive beam
pattern; however, the basic arguments are similar. In reference 13, a detailed analysis of
circular arrays with a fimte number of elements has been done. Consideration was given to
the effects of sensitivity

There are several useful refations dealing with integral representations, recurrences
and series expansions for Bessel functions Reference 11 1s one of the readily available
sources which has tabulated many of them We can illustrate the use of several of them by
considering an example where we phase the array to a wave number with fimte k.

For a signal with wave number ET we need a phasing given by

1 ke 1 k. R cos(¢-4 )
LI I B T . G d)s
R R w? (739
where
= (keoan)? + (kneam2] V2
k"l‘- [kpeap© + (k7 ay)“]
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Substituting this nto Eq 7 31 yields
g(w.k) = J,[(k-k) rR] » (7 37a)

where

11/2 (7 37b)

(k) = [k ap? + Wk ag)?
1€, we simply steer the array to kT as expected For example, when both the target and
wave number are 1n the same plane as the array with wave number magmtude of 2a/\, as
Hlustrated in Figure 7-1b, we have

gwk=1, (4;\r__R sm(%)) (738)

where A¢ 1s the separation angle between the target wave number and h Naturally, there 1s
no change as the target moves around at edge because of the circular symmetry

If we pursue the Founer analysis, we arrive at the same result m a somewhat more
circuitous manner  The analysis is, however, illustrative of the use of the relations needed
in the analysis of more complex problems We have

e ) /21: . ‘jkrTR °°5(¢'¢k—r) _jn¢d
@)= o 2R €

R
1 ""(¢kT 2)

= s Inlke R) (739)

L

Substituting this mto Eq. 7 33 yrelds

o jn(¢p-dy )
gw k= Z e oty R Ip(keR) (740)

n=-00

One now uses the relation [29, Eq 9.1 79]

» . Z Jpem(®) Jp(v)elme

m=-o

Ipwie'
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Figure 7-33. Relation of terms in equation 7 40
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where the terms W,u,v, and a8 are geometrically related as indicated in Figure 7-33. This yields
90 1) =T [tk K] (74D

As pointed out above, this approach is not as direct, however, 1t does indicate the usefulness
of one of the product theorems for Bessel functions. Generally, often complicated expressions

)

o can be simplified considerably by using these relationships or, more important, there is 2 more
i:t; straightforward approach to the analysis
59 We now consider the effects of staving a circular array whose geometry 1s 1llustrated in

Figure 7-34 We assume that the staving operation multiplies the shading G(w ¢) by a gating
function Gg¢(#) as illustrated in Figure 7-35, where N is the number of staves, g 1s their angular
width, and 9o 1s the origin The Fourier senes associated with this function 1s given by

N Ly

K XA
ZEN,

N-1 ¢
I 1 s/2
= -)(2rmn/N) 2 -jme
Gy(n)=e E ¢ - / eIMP dg
m=0 %52

0, n# Nk
(742)
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% The effect of the staving can be represented as a gating of the original pattern, 1.¢ ,. ) oy
3 .

hriid

2 Gyl $) = G5 (9) G( ¢) (7.43)

4

Consequently, the coefficients {Gst(n) } and {G(w n)} , which represent the Fourier series of
the shading on the circle, must be convolved to obtan the final set of coefficients for the array
If the weighting factor has sigmficant harmonics greater than%‘ , then the coefficients are ahased
Generally this 1s not the case, the only effect of the staving is to cause the Founer coefficients

v

TP I

LIFR
e

to be repeated at intervals of N The net beam pattern 1s then (assume ¢, = 0)

.,
22t

g * b (d’k + '"‘)
. g(w:k) = Ng, R Z Z (;(w;m+n)el(m+nN) 2 TntnNGKR)
n = -0 =<0
nN¢
. smc( > “’) (7.44)

which introduces the same type of grating structure that we observe for clustered linear arrays
with a periodic repetition interval If a hughly directional source can propagate through one of
i the ambiguous sidelobes we will expertence deterioration in performance If not, we would not
53 be bothered except for the increase in white noise due to the increased array area. The simplest
example of these effects can be demonstrated when the array 1s conventionally steered. In this
case, we have

G(w n)= 800 5 (149

1
NoR

the resulting pattern 1s given by

nN<1>s

glw k)= Z SNOTIDy k R) sine (1.46)
n=-c0

Exact statements regarding the number of significant sidelobes are difficult to make. The
question becomes, for those values of n where sinc(nN¢ s /2) 1s significant, 1€, n < 27/¢ o N,

B leoond. |BusR

fiaa how many functions J;,\(k;R) have maximum values in the wave number regio~ of interest
This question requires a father lengthy exammation of the behavior of Bessel functions.

_ In examning the destgn of optimum beam patterns for circular arrays we confine our
o detailed analysis to directional noise fields and to those which are isotropic in the plane

"‘:A,‘ containing the array The general concepts illustrated within the context of hnear arrays

i
v

i

are still applicable and are quite useful 1n analyzing more complicated noise field structures.
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As with crossed arrays, we assume that there 1s sensor noise present This noise has a
correlation given by

E[w(t ¢1)W(r.99)] = N 8(t-1)8($107) = N 8(t-1)b (41 97) (747)
Note that the noise output generated by such a process is given by
2 4 2
Gw (w)=N, lg(w ¢)|~ Rd¢ (748)
0
For a conventionally steered array, this yields

2 27
ow (w)= No

0

Note that we cannot mode! the noise with a two-dimensional white noise spectrum

1k, R cos(¢b)| 2
e ' T

Rd$=N,/21R=NyJAq (7.49)
2aR

of the form

E{w(t Dw(r )] = Nod(t-1)5(z-) (7 50a)
or
Py(w k) =N, (7 500)

The reason for this 1s that although the circular array has resolution capabihities in all directions,
1ts wave number response decays asymptotically only as |15|‘x When mtegrated across the entire
two-dimensional wave vector domain, this decay 1s not suffictently fast in the noise power output
of the array so that any nonzero aperture weighting 1s necessanly infimte

In Section 6 we analyzed optimum beam pattern design for directional noise field
with an arbitrary number of components and arrays of a general structure We can easily
specialize these results for circular arrays. For example, for a single notse source we have
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il
e
27RS (w)
J k Yo
: & ollkkg 1R)- ) Jo (Le=kn] (R) Jo(Ik-kp1,R)
1+ ———
& g(w.k ky) = Ro (751)
3 R AT 2R (@)
3 N
§’3g o 2
- ——— T (Ik7-k,];R
27RS(w) ) (k-knJ1R)
X 1+ ——
o . N,
3 1
4 27RS (w) 2
. 1+ ————— [1-J ([kvk,l,R )
e 2 No No ( o ([_T —n]r )/
; wklky)=s —= 752
3 SR SR 2TRS (@) 732
B3 1+ ———
Y No
>’ Since
b33 2 x2
2 J x)=1-— Ix] <<'1
3 [ 2
t,t
R and
.’ )
sinc(x) = 1- — Ix1<< 1,
b ﬁ 3
&
) ™
, a circular array has a 3/2 hugh resolution improvement over a linear array of comparable } y
)a dimenstons operating at broadside In Figures 7-36 and 7-37 typical notse power outputs for a ! :
'ﬂ circular array for directional noise fields incident normally and tangentially are indicated 5
,i' For the circular array we can analyze the optimum processor for a noise field which s
e has a two dimensional 1sotropic structure. Our representation of two-dimensional noise Sl
:’tf'{'e precesses in Section 2 and some useful relations among Bessel functions are the key factors E:"
W . &
;2,‘ which produce a relatively simple result for the optimum beam pattern and 1ts notse o
:" ! power output From Section 2, Eq. 2 70, we have
o
=
£

L [T 1
Spylw [z§)= 3-”)—2/ polw kI (ke jz| )krdkr=5; folw 12]) (7.53)
o

i - E ‘.‘,;.,:
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Figure 7-36. Output noise for a ring array with broadside directional noise.
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for the structure of an isotropic two dimensional noise field From Section 4, Eq 49,
we want to solve the integral equation

krz
[ Sp(w:12-§1) Glw)dE + Nf(w 2) = Mw)e T €82, (754)
Q

where A(w) 15 chosen such that the beam pattern has umty response n the target direction. For
the circular array geometry this becomes

2
19
f Splw: 2Rsin( ! 2)
o 2

jk—r R cos(MT)
= M) . 0<¢ <2 (755)

G(w-92) Rdgy + Ni(w'dy)

il
The spatial ergenfunctions for this array and noise field are ot the form eind” Ths suggests using

an eigenfunctron approach, which for this case is simply a Founer series expansion of G(w ¢), 1.,

we expand G(cw ¢) n the form
G(w.9)= Z Gwe™ (1.56)
n=4>o

For the left hand side of Equation 7.55 we have
2 9192\ | . z ingy
f Sn w: [2R sin ( 3 Z Gn(w)ej ] Rd¢2+N° Z G(we
0 n=-c0
) ng

N=-0
o 27 i
-ing 1
= Gn(w)/ Sy w:IZRSln(E) lle” "Rag+ Nyie 757
n=-0 0

For the right hand side of Eq 7 55 we use the Bessel function expansion from Ref 25

lTIm is the continuous analog of Gaarder’s observation for the sigenvectors for discrete arrays {13]
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(-] W1

e)Z COSp — Z Jn(Z)o’“(¢+”/2) (7.58) .{g‘:-r
; e
3 From this we obtamn §§

DA*S

2 -kt R cos(¢-¢1) o 5 nd RO
] Y A ALV Z Jn(kTrR)em("/ = (759) é%—
3 K
{i We match Fourier coefficients to solve forG,(w), or ! g‘z‘
% n(7/2-¢1)
3 - Ikp R ¢ 1
i in
Kl Glw:¢) = Mw) Z > M (160
N - sn<o: |12R sin (%»e‘JWRd(b +N,
4 0
¥
{ where Mw) is a normalization factor. The term 1n the denominator can be simplified

& appreciably by use of the wave number representation of Eq. 7.53. Substituting for

Sp(w: 2R sm( ) 1) yields

n P £y
: [ Sp(w: |2R sin ( )le ¢ Rag = L r po(wk (k2R sm( )) k Re I g
0 an¥y

3 (7.61)

Again one of the Bessel function relationships is useful. We have

L AW
= [ Jo<225m(-2-)> ap=12; 62

therefore,

0x 4
[ Snéc' 12R sin (Z) ‘1"¢Rd¢ — [ polwk)d (krR)k Lk (763)
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}.

378
;_" In order to compute the output noise we need from Eq 4 15 v:
e 2n A e
: -jkT R cos(¢p-¢71) >
02w ikp) = / e T Glw:¢)Rdp (1.64) <
0 ﬁ'
B2
Using the Founer expansion of G{w:9) and Eq 7.58 for the exponential we derive f‘n
2 -1 2
o0 } (kp R) »
£ 2 n ¥
3 Awkp= |2k ) or =
2! é n=c | R 2 :
—_ k) + !
33 2n [ Po(wikl (krR)kydky + No (1.652) §
N 5
v
" No/2aR
o{wkp= = 2 (7.65b) 2 3
i Jn(kTrR)
- NOR <0 2 it
n=-co -z—w— / polwiky) Jn(krR)krdkr +1 s
| o '
A number of special cases can be constdered at this peint. For example, for a target normal to o
array, ky_1s zero so we have -
T %3
No (22 [T 2
2, = 9 ol .
04w.ky) = 7R (ﬁ L po(w.kr)Jo(krR)krdkr+ 1> (7 66)

ie., only the term n=0 1s sigmficant in the output noise power. For the case of ring noise, from
Eq 279, we have

PRIV v {EESEAAS

2
polwiky) = T‘rI so(“’)“o(kr'ko)

This produces an output power of

No/2mR

o w.kq) = (767)

1%

2
J
o0 n(kTrR)

2

n=w | NgRS,(w) lel(kOR) +1

ity

s
G
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Most pfeo:k;) of interest are zero for k. > 2a/A. Since Jp(x) = 0 for x < 2a/A with n
increasing, there are a finite number of terms which are sigmificant Thss 1s analogous to linear
arrays when there were L/ + 1 sigmificant eigenvalues Unfortunately, one must resort to
numerical procedures to evaluate the expressions, just as in the hinear array o Some typical
situations are indicated m Figures 7-38 and 7-39 As the final topic n our analysis of circular
array structures, we briefly consider some aspects of disc arrays The geometry of a disc array
1s the same as a circular, or ning, array except that the entire area 1s filled The beam pattern of

a conventionally steered disc array can easily be found ‘\‘g
L,_E

1 jlk~kT)°z u

Kklkp)= — Qe 717 Tdz Y

gc(‘" —l—T) Aﬂ .::l:"

3

)

w

1 R p2x J(li']—‘T)r f cos(¢-H) 2 R
— / f e rd¢ = = j Jo((k—igr)rr)rdr
7R 0 J0 R (1}

21kkp RV
(ekp) R

(7.68)

This is often termed an *“Airy Disc” from its use in Fourier optics {30]. In Figure 740 we have
compared the beam patterns of linear, circular, and disc arrays with the same length and/or
diameters. We observe that (2] l(x)/x)2 has its first zero at x = 3.8 and a first sidelobe lzvel of
0.0044 at x = 5.2. The behavior near the origin is

2
=>1- - s |xl <<1 (7.69)

Consequently, its resolution is approximately the same as a ring array.

In analyzing the response to various noise fields we observe that directional fields are
again a speaial case, as those results shown 1n Section 6, and that analytic results for 15otropic
fields arc not tractable with the results taking the form of Bessel function senes.
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Figure 7-38. Optimum and conventional array noise power output relative to N,/2aR for
1sotropic noise with a ring array.
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Figure 7-39. Optimum and conventional array noise power output relative to Ng/2aR for
ning noise with a ring array.
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8. ARRAY PROCESSING SYSTEMS

In many situations one must constder systems composed of arrays, 1 ., an array of
arrays. There are many practical reasons that lead one to this situation. For example, one often
has a discrete set of sensors the apertures of which have a finite set of geometnes, so that each
sensor may have directional properties in itself. If the individual wave number responses are
more or less ommdirectional for frequenctes of interest and their separations are large, then
the theory of discrete arrays 1s probably most appropnate. Typically, however, the sensors are
not omnidirectional, the separations are modest, and we need to consider the system as a whole

The physical motivations for using clusters of arrays are that a complete coverage is
either too expensive or impossible. Further economical motivation s that one may be forced
stmply by high data rates to *“‘cluster” arrays because the sensor outputs can not be processed
mdividually, particularly if ccal-time processing is important

Usuaily clustered array systems have a suboptimum performance so 1t is important to
undesstand when the losses enter and to compare their performance to an optimized system In
this section we consider the analysis of suca systems and consider some representative examples.
Figure 8-1 illustiates the general structure of the systems being considered.

242 Gqlw:2) #1 V{1
BEAM OUTPUT #1
ARRAY BEAM
t
Q23 Gplw:z) #2 Y2 ¢
BEAM OUTPUT #2 °M
8 OUTPUT
itz ' -
. N

.
m

ARRAY
#N

yN(t)
BEAM OUTPUT #N

Q: Gylet2)

Figure 8-1. Clustered array structures.

Several possibilities and combinations exist 1n the t.¢sign of these systems One can
convemionally phase, or beamform, with or without shad.ng each subarray, or one can generate
an optimum beam as we have done throughout the text. In addition, one can perform direct de-
lay and sum beamforming, or one can mtroduce the theory of an optimal discrete array to do
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the beam-combining  Consequently, there are four combinations of processing that we
consider We have tabulated and commented upon these combinations 1n the following table

Processing combination for clustered arrays

Combinations of Beams

Indwidual Beams Conventional Combination Optimum Combination

Conventional Conventional array theory of General area of application of

Arrays sonar texts discrete array theory

Optimum Possible apphication for non- Least amount of performance =

Arrays plane (distnbuted) wave targets loss for these suboptimum 3
systems ﬁf

There are also two considerations which commonly simplhify the details of the analysis con-
siderably First, each of the individual arrays has the same pattern, except for a phase offset due
to the displacement of their ceniers, in the secona arrays are regularly spaced

Since we have considered the synthesis of individual arrays, we concentrate upon the
problem of combining thein. Ve define the beam patturn of each array for a target of kr, as
Gi(w:k fkT). The output of each array 1s given by

VR |

dYj(w) = / / G(w klIkp) dR (w.k) + dWi(w) (8.1)

Consequently, the spectral noise covariance matrix for the beams 1s

di 2
Sn(w) =//Gl(wl_lg kT)Pn(w,l()Gj‘(wl_( ']ST) "N+ N°6,1/|Gl(wg)| d;
u (27) Q.
i
(8.2)
We constrain the individual array responses to satisfy
GwikTlkp) =1,
i.e., we have incorporated the steering delay in the individual arrays. There 1s no loss of
generality here since the combiner can assign an arbitrary weighting to compensate for this.

The beam combiner calculates a weighted sum of the individual array outputs In suboptimum
processing, the weights are preassigned and do not directly depend upon the noise spectral covariance
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matnx of the individual array outputs. In op.amum processing, these weights are optimized to achieve
the mmimum noise output power From discrete array theory this 1s given by [30, 31]

ik
Elwlkpl! Sy ¢ T 83)

Ciw)
Elwliy]® (S ()] B(wlkp)

where

- - ¥
Bolgl=[%121 ke |

and g, is the location of the center of the Nth array
In erther the optimum or conventional case

N
@)= Y Clw) dY (), (8.42)
=1

where we impose the constraint of unity response in the target direction,

N N
D @) Gwmkp= D | C@)=1 (8.4b)
= =

The beam pattern for the total system 1s

M
g2 = Y Cifw) g k) ®.5)
=1

and the performance can be expressed as the inverse of the noise output power, or

*
aZ(wlg'T) = Cw) Snlj(w) CJ (w) (8 6)

1

N
=1]

N
=1
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For the optimum array cenfiguration thts becomes

-1
az(w“gr) = (Eiwllgl-]t (Spte)”! Elwllsrl) (€3))

which is identical to that derived for discrete element arrays Ths 1s as far as one can go with
a general formulation for an arbitrary collection of beams

To proceed a step further, we require that the indivadual arrays have a common aperture
weighting except for a hinear phasing for 1ts anising from their location, or

0, klkp) = oo Klkp)e' EET & @8)

Here we have assumed that each array 1s centered at z, and there exists the possibihity of only
steering the individual beams, 1.e., the weighting is constant but one adds a hnear phase shift to
account for each array location

2 ik~kv)*(z.=:
Sy () =/[ Geom(@ slkp)l” Pw ) € XD Zj)ﬁ
T

2
+ N, Blj L |G(w.2)| dz (8.9a)
com

N .

jlkky)z

50w £kp) = Goom(@ slkp) D _Clwe '
i=1

= g(w KlkT) 9comp&-kT) (8.9b)

where Qcom is the aperture of the common array

N iz,
Geomb®) = E Ciw)e (890
=1
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Conssquently, we find that the final beam pattern can be expressed as a product of the beam
pattern for the individual arrays and a beam factor for the combination of them as distributed
in space. Note that the Ci(w) can be designed either conventionally or 1n an optimum fashion.

The performance 15 expressed 1n bastcally the same form as above with somewhat minor
simphfications.

N N
X lkp=) | D € @8y (@) €) @) (8.10)
=1

1

-

2 2 g 2 2
= 19com(@-kIkD| 1Geomplkkpl ~° Z Ciw)l 1Geom(w 2)| dz
(27) Q
When the combination beam is designed 1n an optimum manner, we obtan
2 Ny Jky°2, -1 kg -1
o (@ |kp) = ZZ e = [Sp(w)] e
o q 4 1
i=l j=1

= ET (wlkp) (S Bwlkp)™! 8.11)

Essentially, we are examining the covariance for a noise field which has passed through the wave-
number filter g(w:k [k). There 15 an extensive iterature on the theory of opttmum discrete
arrays. Sometimes the relative spacing between the clusters is so small that the continuous
array theory is a more convenient analysis tool as, for example, when the individual array
responses are omnidirectional and their separations quite close In other cases the spacing is
wide and tl‘le continuous theory 1s no longer appropriate for analyzing the design and operation
of the beam combiner Essentially, one should say that the element spacing 1s sparse

‘The analysis of sparse arrays is quite difficult and the dominan. concern is the sidelobe
structure of the beam. There are two special cases, however, which can be analyzed.
Fortunately, they are of practical interest and are indicative of the general results encountered.
In the first of these we have the clusters spaced at regular intervals in a lattice, whereas in the
second the individual arrays are spaced at regular intervals on rings. The analysis of lattice
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transforms has been studied extensively in spectrographic methods for the analysis of crystal
structures. In the single dimenstoned distributions, the theory of sampled data systems and
Z transform methods are quite useful. The analysis of ring structures 1s more ccmplex and it
is easy to become mixed in a maze of the Bessel functions which appear. Fortunately, there
are some reasonable simple exampl.s which indicate the basic theory involved

A complete discussion of lattice array would take us too far astray at this point In
particular, a large hiterature exists dealing with optimum processing for discrete arrays. Most
of it does not convey the intuitive insight that we have obtained for continuous arrays We
consider hine clusters which have a distribution of the form and which are conventionally
combined

We have assumed an even number of elements The modification for an odd number
with a cluster located at the onigin 1s straightforward. Substituting into Equatton 8.9¢ yields

N/2- 1 e [n+1)/21L
9comb®) = Chlw) e @42

n=-N/2
This is 1n a form that 1s useful for defining a term which puts our analysis in the context of

Z transforms. One 1dentifies Z(k) as

al
2= (813)
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Figure 8-2. Clustered line array.

This leads to the expression

N-1
L SRatvIL Y k-2,
Geompk) = ¢ Cn__N (w)e
n=0 2

Ln

N-1
= 21D Y e nezw” @.14)
n=¢ = 2

Tables of these have been extensively tabulated in conjunction with the use in digital filtering
methods. It is also the basic formulation used by Schelkunoff in his studies of linear arrays.
First we note that Z repeats itself as a function of k We have

Z(D=Z(l_g+n 2—: ga) = Z(Lc_+n 27" %ga) (8.15)
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Consequently, if L/2 is greater than unity then the beam pattern repeats itself within the
2
region of jkf < % or where propagating noise appears, 1 ¢., there is an ambituity in the

beam pattern. We examine the consequences of this in subsequent discussions. Basically, the
array is undersampled at this point.

In order to make our discussion more concrete we consider an example; let

1
Cw) = 5 316)
We then have
N-1 .
Goomb<!s>=(z<k))‘m“/2’zo: S 200"
n=

_ 20y N2 g zgoN

- l Z(L()N/Z - Z&)—le
N 1-20) N zggl2_zgy 12 @17

s facfin ]

This is the space factor for a linear array weighting of the individual outputs, as illustrated
2n
NL
by the total array length. However, there exists the possibility of ambiguous effects due to
the sidelobe at 2x/L. If this is outside 2a/A, then only white noise enters through this side lobe
To consider the effect in more detail, let the individual arrays be phased conventionally and
assume that their length is

in Figure 8-3. The main lobe of the pattern array factor has a width of *

R

(8.18)
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In Figure 84 we have sketched the product G(w.k| k1) Geomp(k-k) which assumes the
target 1s broadside such that kp-a, = 0. We make a comparison for this case N = 4 There
are 2k-1 side lobes of level

nw
inc | — =%1,...,%k
smc(K) n 1

One consequently obtains a main lobe of width 2(z/NL) The effect of the sparse samphing

is to introduce these side lobes If the background noise 1s over regions which are

significant, then one has a performance aeterioration due t2 the sparse sampling. For example,
a directional noise sourse could enter through one of them. If the noise is uniform, or

L) <1/2 with small elements, then the array is ot sparse and one does not observe a reduction
in performance.

While we have chosen a uniform weighting of the individual array outputs, one can
use any type of weighting desired. Tables of Z transforms are useful in this respect. For the
more common shadings one observes a spreading of the width 2(z/NL) and a reduction of
the minor side lobe levels between the beams.

The modification for the situation in which each array s designed optimally is straight-
forward. One still observes a modulation of the main beam by the space factor However, the
more important issue concerns combiuing the beams optimally, which is the basic issue in
the design of discrete arrays.

The design of optimum discrete sparsely spaced disc.ete arrays is, ir gepera, best
done by computational methods as analytical results are qu.te tedious to obtain. There is,
however, one example which does not involve a great deal of tedium and itlustrates some
of the issues which appear in the design of sparse arrays. As one might expect, the noise
field consists of directional signal plus a white component. We assume that the noise has a
wave numberl_cn anda level Sno(w) and that the white component has level No- From

Equation 8.2 we have

- L/2
2 k(z-z) dk
s“ij(“’_)/ Gom(wklkg] P(w,k)e""Lz‘ %) 52+ No [ (Geom(w:2|kp)? do
L{2

2 3k, (z:~2: 2 dk
+5; (NG om(@-kiky)l MEnGiz) =Ny [ IGeom(wikalkpl” —2,  (8.19)
o (21,)N
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We define
- 2 dk
«=Ny | iGeomlw kikt) o (8 20a)
2
B=5, (@) | Geom(w kplk)! (8 20b)

the matnix whose elements are defined above can be represented as

qt
JEn" 21 e’kn'zl

(S =aly+8 . . 8.21)
ej'—(n' IN e-"—(n “IN /|

The inverse of the matrix can be found using the inversion formula of Section 4

- i

JEn’Z) JEn’Z1
SR N . : :
afl +— ™ .

]
ejl_(n N ejljn “IN
The optimum noise power output then becomes
241
N jleykn) 2
2 N =t =n" =
o (wlkp=\-|1- SALEY (3.23)

o 1+fN/a &~4 N
i=1

We observe that the space factor for a uniformly weighted summing of the individual array
output enters the calculations. The same comments regarding closed form expressions for
lattice space arrays and the use of Z transform theory enter here.

If we consider the same linear regularly spaced distribution discussed above with
individual arrays of extent L,,, we have

q = — (8 248)
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L
B8, (@) sinc? ((lgn-lgr)‘ga ?") (8 24b)
N . sinc {k o, N
IS~ 1 kz, |2 [ e 2]
Geomb® =|Z;'- &t =3 (8.24c)
n=1 smc[ﬁ’ga 0
L
LN stnc? (Ak°gar_lz)
1+ — Sn (w) smcz(Ak-ga— e ——
N NO inel Ak L
LON sinc K &, 3
k)= —
% lkn) N, LN L
14 N_o Sno(“’) sinc? Ak a, 3
(8.244)
where
Ak =kpk, {8.24¢)

This is very similar to the results that we obtained for a continuous array of length L,N.In
Equation 8.24 we need only identify the directional noise level as § and the array lengthas
LON. The important term is the space factor which is identified as p. This causes detenioration
in the performance at wave number intervals of

L
GTkgey 5=, 825)

1., when the target and noise are scparated by wave number components of 2a/L as projected
upon the array. At these points, the performance becomes

LN LN . -1

2 _ e . o nm
oo(wll_g-r)— N, 1+ N, Sno(w) sinc X (8.26)
for
LO = % n=tt y , k-1
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Consequently, if Ly > 1, spatal ahasing enters and degrades the performance The only way
to combat thus is for the individual arrays to have enough resolution to ehiminate these effects.
In Figure 8-5, we have sketched the performance for some representative values of the
parameters.

This concludes our discussion on clustered arrays The principle effects are space
factors and spatial aliasing If these effects are not significant, then clustering represents a
possible processing method which has distinct computational advantages, especially for
optimum processing. We have confined our attention to linear combinations. While the
clustering is suboptimum for spatially coherent signals, 1t may become a superior method if
the signals are not plane waves. Here quadratic operations upon the clusters may become
desirable.

PREFORMED BEAMS

One of the most time consuming aspects of processing array data for changing
noise fields is in calculating and forming the spatial, or beamforming, operations One method
of reducing the amount of computation is to preform the beams and operate solely upon the
beam outputs. F.. . 1ays which can spatially sample the ambient field on the lattice dis-
tribution of points, the computational advantages are even more attractive since fast Founer
transform methods can be introduced in order to form the multiple beam outputs.

Consider an array processing system as illustrated in Figure 8-6. In general, one has

yit = [ L (7:3) gi(t-r:§) dfdr 827
Q

The combiner performs a hinear combination upon the beam outputs so as to direct a sum
beam in the target direction kr, with

N
Z C{wky) gilwikp=1 Vw (8 28)
i=1

For conventional processing the beam spacing is quite close in wave numbers, so that the
individual beam outputs are simply scanned to look in the respective direction. There are two
areas whe:¢ more general combinations of beams are useful: 1n null placement methods,
which are closely related to the synthesis of optimum pattern for directional noises, and in
the approximate synthesis of patterns in general. As the two are closely related, we consider
them simulitaneously.
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Figure 8-6 Preformed beam processing.
N
The basic issue 1s the selection of a set of coefﬁcients{ci(w.k-r)}
Jr=1
glw.k |l_cT) = ici(w:lgr) gilwk) (8.29a)
=l
or
N
Glw:z fkp) = Z Ci(wky) Gi(w-2) (8.29b)
=1
such that

oX(wiky) = / ﬁg(w:klkT)l 2 p(wik)

dk
= +N[G(w'gk N2dz (830
(27r)N 09' | TI

is minimized subject to the constraint of 8.28.1 Thus becomes

N N

dk
oz(w:l_t_-r) =Z.Zci(“"l—‘T)Ci‘(“:kT) / / Pp(w:k) gl(w:k)gj‘(w:k) =

=1 =1 enlN
(8.31a)

+ No[ Gy(w:z) Gl’(c:;:g) dz

ppressing the Wy conditional

1 We are
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and

i=1

N
To optimize the choice of the coefficients {Ci(w.l_crr)} I | we differentiate incorporating
=
the constraint by Lagrange multipliers. By differentiating the performance with the constraint

introduced we have for the kil coefficient

N
2 Zl Sﬁ(w) Cj*(w) +Agilw:kp) =0, (8.324)
J=

PRI

where the elements of the matrix [S,j(w)] are

Sj(w) = // Py(@:k)g (@R gHwR) + Ny / Gi{w.9)Gj(c.2) dz (832b)
(o}

N
The optimal choice of {Cj‘(w.g-r)} is then
1=1
A N -1
CHlerkp)= - 3 2 (8(w)] jig; (w:kp) (8.33)
=1

In order to determine the Lagrangian multiplier A we impose the constraint equation to
obtain

ll
N|>‘

N N

. A
23D S g wkpgwikp=-7 TS kD). @34
i=l j=1

where
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g l(w:L(_T)|2 91(w k) 9;(‘055’1')
=
po(wkp)= | 9@ kpIjwkp  |oxwkp)]2 (8:34b) P

9,(wkp)g; (@ k)

As a result, we have

N *
2 g, (wiky) [S@)I]
= !

Cilw kp)= ~ (835) &
Trlpgwikp 15| :
The system performance is given by
!
o2okyp) = (T, ,pg(w:kr) {S(w)] i) (8.36)

Several special cases are of interest here For directional noise fields with a white
background component, the matrix [S(w)] is evaluated easily

M
Sﬂ(w) = Z:l Sm(w)gi(w:km)gj' (wkm) + Ny é Gi(w:;)Gj‘(w:g) dz (8.37)
m=

This is further simplified if
gm(wkr)=0 m=2M

i.e., all but one of the preformed beams have nalls in the target direction. The performance
becomes

-1
oHwkp=(S@) |

with a total beam pattern of the form

N
- -1V1
g(wk)= (gT (w:sr)z;mw)llj‘ gi{w:k) (ISw)I] ,‘) (8.38)
B =

= This is shown to represent an optimum null placement technique
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As an example of this, we consider the following Assume that we have an array of
length L and that there are noise sources of level Sno(w)/ 2 located symmetrically at broad-

27 .
side, k., = —)\-cos(ﬂ), plus the background nosse. Beca. ~ .« the symmetry of the situation

we generate preformed beams of the form

1
GolwD =1 |2 <L)2 (8.392)
14
Gy(w 9= cos ('ZL) 2 <L/2 (8 39b)
L L
* for
1= 1,M-1
so that
. L
golw:k) = smc(lgt_xa 3) (8 40a)
. L
g 1(w:k) = sinc [E'ga 3 n] (8 40b)
+ sinc [k‘o(,. 1‘-+ ﬂ]
ST 2
We have then
NO
So0(w) = Sy (w) sincX(zLy cosfp) + T (8.41a)
Soi() = Si(@) =8, (w) sincXaly cosdy) X [sinctaly cosdy-1m)
+ sinc(ﬂLh cosd, + )], (8 41b)
fori=1,M-1,
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=

Sﬁ(w) = Sno(w) (sinc(Ly, cosd 1) + sinc(Ly cosf i)

N,
. . . ]
X [smc(ﬂLh cosOn +jm)+ smo(ﬂL)‘ cosﬂn-nr)] + T 5ij’

for1) = 1 M-1 (8.41c)
and
(s(w))1
LS, (@) M-l T 1
= L [ -———— smcz(uL)\ooson) + Z(sinc('}rL)‘cosOn-i‘n) + sinc(wLy cosf , +im))
N, No =1
[ sinc(aLycosd) ] [ sinc(arLycosty) 1)
sino(ﬂL;\oosﬂn—w) sino(uLRooan-qr)
+ sinc(wL}‘oosanﬂr) + sinc(wLRcosOnﬂr)
X . . . $ (8.42)
sine(rLy cosf ,{M-1)7) sino(nLy cosf AM-1)7)
_+ sinc(ﬂLAoosOnﬂM-l)ﬂl .+ sino(‘nlq\cos@n+(M-l)1!)J }

The only beam which 1s nonzero at broadside is the Oth one; consequently we are interested in
isil Lor

2
Ml
. { 1+ «xsno(::)mo) Z: sinc(aly cosd-1r) + sino(lLAcosﬂnﬁw))
- - =
{S(e) lll = N % VT
11 +(Sy /N (sinc? Qrlyco,)) "Z [‘i“c("l"\:“@n-iw)+snc(2:LAmsen+m)2]
=1

(8.43)
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< We see that the term ‘
b Lsno(“’) M-1 ~
: -~ sine(wLycosd -17) + sinc(1rL;\cosl$n+11r)2 ;
° =1
5 L §
determines how fast we can approach the white noise performance This term, however, ;
?‘ represents the amount of noise energy that can be cancelled by the off-target beams One
can also generate a general expression for the beam pattern. i
It is more illustrative, however, to consider an example :
Xy Ly =1 (8.44a)
1
cosb, = 7 (8.44b)
M =2 (8.44¢)
Then we have
sinc(# Ly cosf, )-2 (8.45a)
A n 7 408
X and
y ;
. 3 4
. smo(w!.)‘coson-qr) + sinc(nLy cosbp,tm) = 3; (8.45b)
2
1+4= -=
Y 3 7
2 vy 1+ v g
.. L 3 )
5 S()il=— ; (8.45¢) ;
i NO 1+ E g
3 97 3
where !
LS, (@) ,.\2 3
n 2 '
= (_) (8.45d) A
NO T I
The beam pattern follows as '
4
216

T TSN, S S TN T




1 4
gwklkp= 2 {( 1+ ;7) sinc ko,

14—
9'7

L L
-%1 (sinc ke, ?+ m) +sinc ko, E. 1r)} (8 46)

We see that when v is small we have a conventional beam; however, as the directional noises
become strong we approach

(wk [kp) > sinc(g'ga %—)- % [sinc (lg A %—1- 1r) + smnc (E-ga-l-l; -’Il’)] s (8.47)

2n
which places a null on the direction of the noise k = —): cosfy, = -:— However, as we have seen

in our discussion of superdirective array, it introduces severe side lobes at other wave numbers
with all the attendent shortcomings of this result. The performance is given by

H—E
No 97

o2 (wik|kp)= T

L
When v is small, we are limited by the white noise level performance of o When v is large
0

the performance approaches

Yo

L’
i.e., we are willing to accept 13/4 increase from the white noise in order to cancel the
directional noise sources. This represents the additional energy that enters through the large
side lobes in the beam.

There is another case which is worthwhile to examine. Assume that cach of the beams
are distributed about a wave number k; and that the beam outputs are uncorrelated, i.e.,
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Such a situation could appear with orthogonal aperture weightings and a frequency wave
number spectrum which varies slowly, so that we have

$ij(e0) = (B(w:k;) +No) / R4 5

i.c., each beam has a power level proportional to the frequency wave number spectrum at
its nominal center of its distribution. The optimum processor is now an optimal diversity
ratio combiner with the weighting determined by the signal-to-noise ratio in that beam.
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